

ABCM Plugin for FrameMaker®

v1.0 User Guide

ABCM Plugin for FrameMaker® User Guide (v1.0)

Contents iii

Introduction
Advantages over native conditional text . 1
What the plugin does . 2
Requirements to use the ABCM plugin . 3
About the name. 3
Trademarks and licensing information. 3

Getting Started
Definitions of terms . 5
Important note on native conditional text . 5
Specifying attributes . 6
Conditionalizing whole chapters. 7
Preferences . 7
About the main settings file. 8
About scheme categories . 9

Filtering, Coloring, and Validating
Filtering . 11

Launching a filter .12
Filter types - Source versus duplicate file .12
How filtering works .14

Contents

User Guide (v1.0) ABCM Plugin for FrameMaker®

iv Contents

Restoring a document or book .14
Conditionalizing (and filtering out) entire files .14

Coloring. 15
Launching a coloring action .15
Removing coloring .16

Attribute validation. 16
Automatic validation .17
Validation rule #1 - Simple syntax .17
Validation rule #2 - Ancestor element lacking subordinate condition17
Rule #3 - Unspecified descendants .19
Rule #4 - Empty attribute not allowed .19

Scheme Setup And Other Main Settings
General information about schemes and categories 21

General scheme editing procedures .22

Coloring schemes. 22
Basic coloring scheme behavior .23
Coloring scheme details .24

Attribute/value matching criteria . 24
Coloring rule order . 26
<no value> and <any value> in a coloring scheme . 27
Where the colors come from . 28
Other coloring scheme options and features . 28

Filter schemes. 29
General filter scheme matching behavior .30
<no value> and <any value> in filter schemes .31
Filtering out elements by type, using unique attribute names32

Validation schemes . 34
Advanced scheme options . 34

Considering EDD-applied defaults .35
Ignoring case-sensitivity .35
Attribute values delimited by whitespace (Tokenized strings) 35
Processing all flows .37

Master attribute library. 37
Master colors list . 37
Migrating Sourcerer settings. 37

ABCM Plugin for FrameMaker® User Guide (v1.0)

Contents v

 External Calls to ABCM
How to send an external call to ABCM . 39
General information on external calls . 40

Specifying document and book arguments .41
Specifying Boolean arguments .41

Call reference . 41
ColorElement .41

Syntax . 42
Usage description . 42
Returns . 42

ColorFile .43
Syntax . 43
Usage description . 43
Returns . 43

Hello .44
Syntax . 44
Returns . 44

FilterCheckElement .44
Syntax . 44
Usage description . 45
Returns . 45

FilterFile .45
Syntax . 46
Usage description . 46
Returns . 47

RestoreFile .47
Syntax . 47
Usage description . 48
Returns . 48

SetParm .48
Syntax . 48
Usage description . 49
Returns . 50

SetScheme .50
Syntax . 50
Usage description . 51
Returns . 51

ValidateElement .51
Syntax . 51
Usage description . 52
Returns . 52

User Guide (v1.0) ABCM Plugin for FrameMaker®

vi Contents

Detailed example—Calling ABCM (FDK) . 52

ABCM Plugin for FrameMaker® User Guide (v1.0)

Introduction 1

1: Introduction

ABCM is a plugin for the structured environment of Adobe FrameMaker that allows you
to use attributes and values to indicate and manage conditional content. The functional
concept is similar to native conditional text, except that conditions are specified and
managed with structural metadata rather than traditional condition tags.

Structured FrameMaker has always allowed conditional metadata to be specified with
structural attributes, but it has never included any native features to manage those
conditions. This plugin fills that deficit and provides those management functions, such
as conditional coloring and the production of conditional output.

Advantages over native conditional text
The use of structural metadata and the ABCM plugin for conditional text brings a host
of advantages over native condition tags, including:
• Easier management of multiple, overlapping conditions - Structural attributes

provide a multi-dimensional matrix for specifying overlapping conditions, and the
plugin allows them to be managed much more easily and independently. If you
have used native conditional text in the past, you are probably aware of the
difficulties that immediately surface once you attempt to overlap multiple conditions,
many of which are overcome by the ABCM methodology.
With this plugin, each condition is its own entity that can be managed without
conflict with others. You can color any condition or combination of conditions as you
see fit, and completely ignore any conditions that you are not concerned with at the
present. Similarly, you only deal with the conditions of interest while producing (or
filtering) output. No more sifting through long lists of conditions trying to decide what
to hide versus show.

User Guide (v1.0) ABCM Plugin for FrameMaker®

2 Introduction

• Clear and concise application of conditions - When your conditions are
assigned as attribute values, you know exactly what content is conditional, every
time. You never again have to be concerned with issues like a missed character or
paragraph mark during condition assignment.

• “Automatic” conditions - Because the mere presence of an attribute can
represent a condition, a particular element can be designated as always
conditional. A common application of this behavior is through the use of designated
elements for in-text authoring comments. If you place a unique attribute on such an
element, you can have the filtering process automatically remove every single
instance of the element, ensuring that every one is removed, every time. Following
this example, you would never again need to worry whether you conditionalized all
of your personal comments.

• “Scheme” usage for controlling coloring and filtering actions - The plugin
operates on the concept of “schemes” to control filtering and coloring activities. A
scheme allows you to “program” a certain coloring or filtering pattern into your
settings one time, then simply run that scheme afterwards. The repetitive decision-
making process of the Show/Hide dialog box becomes a thing of the past.

• Preservation of conditions in markup - If you export XML or SGML and your
conditions are specified as attribute values, your conditions will naturally survive the
trip in their native form. Furthermore, they will be readily available for any external
post-process to recognize and manage as necessary.

• Whole-chapter conditionalization - The functional model of the plugin allows you
to conditionalize whole chapters of a book.

What the plugin does
The plugin provides three main functions:
• Coloring - Using schemes based on attribute values, the plugin can color your

conditional content in a highly-flexible and customizable fashion. The concept is
similar to native condition tag indicators, but the functionality is much more
advanced. For more information, see Coloring on page 3-15.

• Filtering - Filtering is the process of producing conditional output, similar in concept
to using the FrameMaker Show/Hide dialog box. It is functionally different than
native conditional text, though, being more flexible and easier to use. For more
information, see Filtering on page 3-11.

• Validation - With conditions specified in structural markup, there are certain rules
which can be applied to help maintain the accuracy and integrity of those
conditions. Validation uses these rules to check your document setup and reports
any violations it finds. It has no counterpart in native conditional text. For more
information, see Attribute validation on page 3-16.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Introduction 3

Requirements to use the ABCM plugin
• Structured FrameMaker 7.x or 8.x, with any EDD. You may use any attributes and values

you want for conditions.
• Microsoft Windows, as supported by your version of FrameMaker.

About the name
ABCM is an acronym for Attribute-Based Condition Management. The plugin is named
this because no one could come up with a better name, much to the lament of the
developer.

Trademarks and licensing information
This software is provided free and carries a license for unlimited use by anyone in a
corporate, business, personal, or other setting. You can use it, not use it, copy it,
reverse engineer it, or anything else that amuses you or makes you money in an
otherwise legal fashion. If you choose to use it, be aware that YOU are FULLY
RESPONSIBLE for any actions or consequences that result from its use, including
hardware damage and data loss. West Street Consulting and associates will not be
held responsible for any damage caused by its use. USE IT AT YOUR OWN RISK!

Adobe and FrameMaker are registered trademarks of Adobe Systems, Inc. Quadralay
and WebWorks are registered trademarks of Quadralay Corporation. FrameScript is a
registered trademark of Finite Matters, Ltd. FrameAC is a product of Mekon Ltd. All
other marks are trademarks of their respective owners. West Street Consulting is not
affiliated with Adobe Systems and this software is in no way developed, endorsed, or
approved by Adobe.

With regards to functionality only, this plugin is somewhat of a next generation to the
Sourcerer™ plugin, owned and distributed by Advantica, Inc.® Its author is a former
employee of Advantica and was involved with the original development of Sourcerer.
Currently, West Street and Advantica have no affiliation with one another and Sourcerer
and ABCM are separate and completely independent products. The author would like
to publicly thank Advantica for the time and inspiration to develop Sourcerer, which has
led to the advancements found in this newer software.

User Guide (v1.0) ABCM Plugin for FrameMaker®

4 Introduction

ABCM Plugin for FrameMaker® User Guide (v1.0)

Getting Started 5

2: Getting Started

This chapter contains information about the basic concepts involved with the plugin.

Definitions of terms
Within this document, note the following definitions:
• Native conditional text or conditional text - Refers to the built-in conditional text

feature that comes with FrameMaker, with the standard condition tags and
show/hide behavior. While these terms can be accurately applied to elements with
conditional attribute values as processed by this plugin, they are reserved for the
native feature for clarity.

• Attributes and Values - Refers specifically to the attributes and values found in
structural markup. With regards to ABCM functionality, attribute values are the
means of conditional tagging, replacing the condition tags used with native
conditional text.

Important note on native conditional text
This software is intended as a replacement for native FrameMaker conditional text,
leveraging the power of structural markup to overcome the many limitations associated
with the native feature. While the software does not prevent you from using native
conditional text at the same time, it is highly recommended that you do not. The usage
of this software to manage conditional information does not mix well at all with the
usage of native conditional text. In any given document set, you should use one or the

User Guide (v1.0) ABCM Plugin for FrameMaker®

6 Getting Started

other exclusively. Using ABCM in conjunction with native conditional text will likely
produce unexpected and disappointing results.

Specifying attributes
For the purposes of this plugin, any attribute and value can represent a condition. For
example, the following Section element shows a potential “ProductA” condition
designated for the product attribute:

Or, the following figure shows a Section element potentially conditionalized for two
different products:

You may use multiple attributes and values as needed to designate conditions,
overlapping as necessary, such as:

In short, you may use any attributes and values you wish, provided that you use them
consistently and build your scheme logic around them.

NOTE: Using a Strings-type attribute in an EDD, it is convenient to add
multiple values to a single attribute in the form of a list. However,
ABCM also supports tokenized strings of values, typically found in
XML markup. The recognition of this construct is an individual
scheme option. For more information, see Attribute values
delimited by whitespace (Tokenized strings) on page 4-35.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Getting Started 7

Figure 2-1 Multiple values as a tokenized string

Conditionalizing whole chapters
One of the key benefits to using ABCM is the ability to conditionalize entire chapters of
books. For more information, see Conditionalizing (and filtering out) entire files on
page 3-14.

Preferences
The following table describes the general plugin preferences, accessible by selecting
ABCM > Local Preferences:

Main settings file location Sets the path for the primary main settings file. For more
information, see About the main settings file on page 2-8.

Default scheme category Sets the default scheme category upon FrameMaker startup.
The default category will initially appear in the coloring,
filtering, and validation dialog boxes. It will also be used for
locating the default validation scheme if you have auto-
validation turned on.

Argument delimiter for
external calls

String delimiter to use between arguments for external calls to
ABCM. For more information, see General information on
external calls on page 5-40.

Default validation scheme (Optional) Default validation scheme to use upon startup. If
you have auto-validation turned on, you should have a valid
scheme specified here, otherwise the validation actions will
fail until you manually specify a valid scheme.

Auto-validate attributes while
authoring

Causes validation to occur during key user events such as
inserting and wrapping elements, and setting attribute values.
Auto-validation only occurs on the single element in question,
such as the one just inserted. For more information on
validation, see Attribute validation on page 3-16.

Apply strikethrough text Causes elements that violate validation rules to be marked
with strikethrough text during a validation action. If
unchecked, validation will produce warnings and/or a report
only.

User Guide (v1.0) ABCM Plugin for FrameMaker®

8 Getting Started

About the main settings file
The main settings file is the home for all scheme and attribute library data. Whenever
you work in the scheme editor, all the data you see is coming from the main settings
file, and likewise all modifications are stored therein. Whenever you specify or change
a scheme, all scheme parameters come from this file.

The plugin always keeps a local copy of the main settings file to retrieve scheme data
whenever necessary. If you want, you can use the local file as the only copy, managing
all your data locally. In this scenario, the scheme data you use is private to your
installation, and the only means of sharing scheme data with other users is to pass a
copy of the file around. When you edit schemes, you are editing data in the local copy
only.

Alternatively, you can place a “master copy” of this file anywhere on your computer or
corporate network, and point any number of individual users to that master file. In this
scenario, FrameMaker will retrieve a copy of the master file upon each startup and
store it locally, after which it operates normally with the local copy. With this type of
enterprise configuration, you can maintain a central library of scheme data and ensure
that all applicable users are using the same scheme parameters.

The location of your “master copy” is specified in your preferences. By default, the
location points to the local copy, which normally at the following path (or similar):

C:/Program Files/Adobe/FrameMaker7.2/WestStreet/ABCM_MainSettings_LocalCopy.fm

With the preferences pointed to this file, you will be working in “local mode” only. If you
want to engage the “enterprise” feature, you need only to move a copy of that file to
some master location, then edit your preferences to point to the master copy. Once you
point to a different file, the plugin will go to that location automatically upon startup,
retrieve a copy, and overwrite the local version. The local copy will remain current with
the master file and a group of users can remain synchronized. For more information,
see Preferences on page 2-7.

Active rules Activates and/or deactivates validation rules on an individual
basis. For more information on validation rules, see Attribute
validation on page 3-16.

Default filter type Default filter type that appears initially in the filter dialog box,
where it can be changed later. For more information, see
Filter types - Source versus duplicate file on page 3-12.

Default coloring scheme (Optional) Coloring scheme to use upon startup until manually
changed.

Politics Don’t lie. We will know.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Getting Started 9

Whenever you edit schemes, you are editing the file that your preferences point to. If
your preferences point to the local copy, your edits will appear on your local installation
only. If your preferences point to some master copy, your edits will appear there, and
your local copy will be refreshed once you are complete. If you edit some master copy
that other users also point to, they will see your changes upon their next startup of
FrameMaker.

NOTE: If you point to a file on an enterprise location but the software is
unable to find it, the most recent local copy is used instead. In this
manner, the software will remain functional in the event of network
problems that are blocking access to your master copy.

A main settings file is a structured FrameMaker document itself. It may have any name,
but it must use the EDD designed for it. If you plan to place a master version
somewhere else, you should simply copy and paste the local copy that installs with the
software, then point your preferences to the new location.

About scheme categories
The software uses three different types of schemes for processing, as applicable:
• Coloring
• Filtering
• Validation

To help with scheme management and organization, schemes are placed into
categories, and you must select the appropriate category when setting or editing a
particular scheme. Each category can contain any number of coloring, filtering, and
validation schemes, and the way in which you set up your categories is completely up
to you. This architecture is designed simply to allow the grouping of common schemes,
such that any given list does not get too long.

User Guide (v1.0) ABCM Plugin for FrameMaker®

10 Getting Started

ABCM Plugin for FrameMaker® User Guide (v1.0)

Filtering, Coloring, and Validating 11

3: Filtering, Coloring,
and Validating

This section of the document describes the three main processes that the ABCM
provides to manage your conditional content:
• Filtering - Filtering is the process by which you produce publishable output from

your composite, conditional source. It is analogous to the “Show/Hide” activity with
native conditional text. For more information, see Filtering on page 3-11.

• Coloring - Coloring is a means of denoting your conditions with custom colors,
primarily as an authoring convenience to help you visually see your conditions. This
function is analogous to the “condition indicators” aspect of native conditional text.
For more information, see Coloring on page 3-15.

• Validation - Validation provides an automatic means of detecting common errors
with conditional attribute assignment. It is unique to markup-based conditions and
has no counterpart in native conditional text. For more information, see Attribute
validation on page 3-16.

You can have as many schemes as you want, and even share them at an enterprise
level. For more information, see About the main settings file on page 2-8.

Filtering
Filtering allows you to produce output from a composite, conditional source, often as
one of the final steps before publishing. It has some conceptual similarity to showing
and hiding native conditional text, but it is much more advanced and flexible.

The filtering logic is directed entirely by the parameters of your defined filter schemes.
That is, for any given document, all decisions about what content gets “shown” versus
what gets “hidden” are based on the instructions found in the scheme that you run. This

User Guide (v1.0) ABCM Plugin for FrameMaker®

12 Filtering, Coloring, and Validating

section does not cover this logic; rather, it describes the general aspects of filtering and
file handling. For details on how the logic of schemes work during the filtering process,
see Filter schemes on page 4-29.

Before attempting to filter content, you should read this section carefully. You should be
especially sure that you understand the difference between source and duplicate file
filtering, as described in Filter types - Source versus duplicate file on page 3-12.

Launching a filter
To launch a filtering action, bring the desired book or document to the front and select
ABCM > Filtering > Filter {doc type}. This function will produce the filter dialog box,
with the following options:

NOTE: If you intend to filter a whole book, be sure to bring the book
window to the front before launching the dialog box.

Filter types - Source versus duplicate file
ABCM provides two types of filtering which you should be sure to understand before
using the filter:

Scheme category and Filter
scheme

Sets the filter scheme you want to run. For more information
on scheme construction and behavior, see Filter schemes on
page 4-29.

Filtered book folder Sets the target folder where a duplicated, filtered book will be
placed. This option is only applicable to duplicate file book
filters. For more information, see Filter types - Source versus
duplicate file on page 3-12.

Filter type Filter type for the current filtering action. For more information,
see Filter types - Source versus duplicate file on page 3-12.
NOTE: You can set a default value for this option in your

preferences. For more information, see Preferences
on page 2-7.

Save original files before
filtering

Causes the plugin to save all applicable files before launching
the filter, including the book file if you are performing a book
filter. This option is especially recommended for duplicate file
filters, because the filtering action will close your original files
during the process and any unsaved changes would be lost
otherwise.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Filtering, Coloring, and Validating 13

• “Duplicate file” filtering - With this type, your files to be filtered are duplicated,
then the content to be “hidden” is completely deleted from the duplicate. Your
source files are unaffected, and the result is a filtered duplicate of the source file.
This form of filtering is very clean and is generally recommended for filtering
processes involved with pre-publication document preparation.

• “Source file” filtering - This type of filtering works directly on your source files and
uses native conditional text as the tool to hide the unwanted content. For all content
deemed to be hidden, it applies a condition called “Hidden” and then hides that
condition after the filter. Your source files are effectively filtered, but because the
unwanted content was hidden with regular conditional text, no content is
permanently deleted.

The decision of which filter type to use is purely based on workflow. For publishing,
especially books, the duplicate file method is generally preferred, because native
conditional text is known to cause crashes and other oddities while generating print or
PDF output. On the other hand, the source file filter might be more convenient on a
single-document basis while authoring, such that you can get a quick view of what your
output will look like.

If you perform a duplicate filter on a single document, the plugin will open up an
unsaved duplicate and then filter it, leaving it open on the screen afterwards. If you
perform a duplicate file filter on a book, you must specify a target folder to receive the
duplicate book. ABCM cannot duplicate a book within the same folder as the original
book, because duplicate books use all the same filenames as the original book. The
only physical difference with the duplicate book is the missing content that was filtered
out, as applicable.

Using the duplicate file filter on a book provides a convenient means to move your
publishable output to some refreshable staging area for publication. For example, if you
use Quadralay software to generate help systems from your book, you can filter the
book at will into a separate project area, then run the help generation software on the
filtered duplicate. With this method, you never need to be concerned with the help
generation software manipulating your source files or attempting to manage conditions
for you.

When you perform a duplicate file filter on a book, ABCM will adjust all cross-
references and file reference links automatically. For cross-references between chapter
files, the links will be adjusted to point between the respective chapter files of the new,
duplicated book. For cross-references outside the book, the plugin will leave them
alone and they will continue to point to the same, external source.

If you use the source file filter, you should be aware that the native conditional text is
used as a mechanism to hide content only. The native conditional text (i.e., the
“Hidden” condition) plays no part in the logic of determining what to show or hide. All
show/hide logic is driven by the respective filter scheme. Note the following important
items about source-file filtering:

User Guide (v1.0) ABCM Plugin for FrameMaker®

14 Filtering, Coloring, and Validating

• The filtering and restoration process will interfere with any native conditional text
assignment already in the document. Although you should not use native
conditional text in conjunction with ABCM, you should be especially sure not to run
a source file filter on a document that still contains any.

• The plugin provides an automatic means of restoring a document after a source file
filter. For more information, see Restoring a document or book on page 3-14.

How filtering works
When a structured flow is filtered, ABCM starts at the highest-level element and walks
through the entire structure tree in a logical fashion, checking the attributes on each
element against the active filter scheme. For any given element, if the element is
determined to be a “keeper,” the plugin continues on to the next element. Conversely, if
ABCM determines that the element should not be kept, it will hide or delete the element
and all its children, according to the filter type. It then backs up to the previous element
and continues down the tree.

The active filter scheme contains all the logic used to determine what content should
remain, and what should be removed. For details on this logic, see Filter schemes on
page 4-29.

Restoring a document or book
After performing a source file filter, you can restore your document or book to normal by
selecting ABCM > Filtering > Restore {doc type}. This function will remove all
instances of the “Hidden” condition tag in the restored document(s). The intent is to
restore the document to the actual condition previous to the filter action.

NOTE: This function may remove other native conditional text from the
document. For this reason, you should never run a source file filter
or post-filter restoration if you are still using native conditional text
manually. For information on native conditional text, see Important
note on native conditional text on page 2-5.

Conditionalizing (and filtering out) entire files
ABCM allows you to conditionalize an entire chapter of a book, and likewise filter out
the whole chapter as applicable. To conditionalize a chapter, simply use conditional
attributes at the highest-level element of the main flow, like you would any other
element. If a filter scheme determines that the HLE should be removed, it assumes that
the entire file should be removed from the book.

Note that whole-chapter removal can only occur for duplicate file filters, because it
requires a permanent alteration to the filtered book. The plugin never makes

ABCM Plugin for FrameMaker® User Guide (v1.0)

Filtering, Coloring, and Validating 15

permanent alterations to your source files, so it cannot remove a file if you are
performing a source file filter. If a source file filter encounters an HLE that should be
hidden, it simply hides all content in the flow, which will normally leave you with blank
pages in your output. The ability to conditionalize and remove entire chapters is an
important benefit to using duplicate file filters, among others.

Coloring
Coloring text according to conditions is mostly an authoring convenience, allowing you
to see visually where your conditions are assigned. In this respect, the purposes of
coloring with the ABCM plugin are exactly the same as those associated with native
conditional text.

The process of conditional coloring with the plugin, however, is functionally much
different than native conditional text. Before attempting to set up schemes and perform
coloring actions, you should be aware of the following:
• Coloring does not occur until you manually run a scheme through the ABCM >

Coloring menu or associated shortcuts. The plugin does not include any automatic
coloring.

• Coloring is applied as a simple format override, much as if you opened the
paragraph designer, selected a color, and clicked Apply. It is therefore easy to
remove by refreshing the EDD definitions.

• When you run coloring on a whole document, the EDD definitions are first refreshed
to remove any previous coloring. This process will also remove any other format
overrides in the document.

• The active coloring scheme contains all the logic used to determine color
assignment. For more information, see Coloring schemes on page 4-22.

NOTE: Coloring should occur with reasonable reliability, but IT IS NOT
FLAWLESS. Format overrides do not always mix well with an
EDD-driven, structured environment, and some anomalies may
occur. It should always work well enough, though, to clearly
indicate where your conditions are assigned. Note that in any case,
FILTERING SHOULD BE FLAWLESS. If a certain piece of content
does not color as expected, it should still filter correctly. If it does
not, the software has a critical bug and you should report it to West
Street.

Launching a coloring action
To launch a coloring action, you should bring the desired file to the front and select
ABCM > Coloring > Color {doc type}. Note the following:

User Guide (v1.0) ABCM Plugin for FrameMaker®

16 Filtering, Coloring, and Validating

• When you choose to color a selection only, the software colors the selected
element and all descendants. If no element is entirely selected, the software colors
the element that contains the insertion point, and all descendants. If there is no
insertion point, nothing happens.

• The software does not automatically apply coloring, so you may want to keep the
Esc 1 1 shortcut handy for coloring the current selection. In your preferences, you
can specify a default scheme to load upon startup that will be used for selection
coloring, until you change it.

• By default, the scheme selection box appears each time you launch a document or
book coloring action. You can stop this behavior by unchecking the option at the
bottom of the selection box. Afterwards, coloring will initiate as soon as you select
the respective command, using the most recently-selected scheme. If you want to
restore the appearance of selection box, you can select ABCM > Coloring > Set
Active Scheme to produce the same selection box, and recheck the option.

• When the software determines that a color should be applied, it looks for it by name
in the current document’s template. If it cannot find the color, it cannot apply it.

• When an entire book is colored, any chapter files that are closed will be skipped.
• Coloring will override any colors applied by paragraph and character formats, but it

will not override colors applied by condition indicators from native conditional text.

Removing coloring
Coloring by ABCM is accomplished by simple format overrides, and are therefore
easily removed by refreshing the element definitions. You can do this with the File >
Import > Element Definitions command, or perhaps with a shortcut provided with
plugins such as West Street Structure Tools.

Attribute validation
ABCM includes a validation feature that helps you prevent common issues associated
with attribute values and conditional markup. It may be used as an automatic process
during authoring, or you can run it on an entire document or book as a post-process
before filtering and publishing. When you run it on an entire file, ABCM produces a
hyperlinked report detailing all the issues it found.

The following sections contain details on the four potential issues that validation can
detect. Before using validation, note the following:

ABCM Plugin for FrameMaker® User Guide (v1.0)

Filtering, Coloring, and Validating 17

• The software is programmed to recognize four potential issues, but not all four may
be important to you. For this reason, you can selectively decide which validation
“rules” should be active, using your preferences. For more information, see
Preferences on page 2-7.

• ABCM has no association with element definition validation, launched through the
Element > Validate menu command.

Automatic validation
In your preferences, you can opt to have validation occur automatically during key user
events, such as inserting elements and setting attributes. Any rule violations are
reported instantly with message boxes, and strikethrough text applied as applicable.

For auto-validation to work, the software must have an active validation scheme. In
your preferences, you can specify a default validation scheme to load upon startup,
such that auto-validation will begin to work immediately. If you do not specify a valid
default scheme, auto-validation will fail after startup until you manually set an active
scheme. For more information on preferences, see Preferences on page 2-7.

Validation rule #1 - Simple syntax
When using attribute values to denote conditional content, the syntax of the specified
values is extremely important. With rule 1 active, the validation feature will scan all
attributes contained in the active validation scheme, and ensure that all specified
values match those contained in the scheme. If the software finds a value in the
document that is not in the scheme, it will report it as an error. Note that it only scans
the values of the attributes found in the scheme, and all other attributes are ignored.

Validation rule #2 - Ancestor element lacking subordinate condition
Because of the natural inheritance that flows through a structure tree, it is normally an
error when something breaks that flow. When using attribute values to denote
conditions, this situation can occur when an element contains a condition that is not
shared by all its ancestors.

As an example, consider the following structure fragment:

User Guide (v1.0) ABCM Plugin for FrameMaker®

18 Filtering, Coloring, and Validating

This fragment is hierarchically sound because all conditions are properly nested and
the natural inheritance is not broken. The Section element contains all the conditions
shared by subordinate elements. This includes the p element with no value, because a
“no value” situation generally indicates to inherit parent conditions by default. This
fragment will filter normally for both products A and B, and no content will get lost.

Conversely, consider the following fragment:

This fragment has hierarchy issues because conditions are not properly nested. In
particular, the “ProductA” element is generally orphaned, because its condition is not
shared by the Section ancestor. To illustrate, consider the case where you are
filtering to produce a “Product A” version of this document. The Section element will
be removed during the filter process, because it does not apply to Product A. This
removal, however, will also remove the subordinate elements, including the p element

ABCM Plugin for FrameMaker® User Guide (v1.0)

Filtering, Coloring, and Validating 19

tagged for Product A. So, this element will never appear in a Product A version of the
document despite its tag, due to the mismatch in conditional hierarchy.

During validation, this scenario is checked for all attributes found in the validation
scheme. Note that this rule does not look at the validity of the values themselves;
rather, it only looks for mismatches between ancestors and descendants with any
value. Therefore, the specific values specified in the validation scheme are not used for
this rule, unlike rule #1.

Rule #3 - Unspecified descendants
In some specialized cases, you may require that all elements explicitly specify all
applied and inherited conditions. For example, consider the following structure
fragment:

In a purist scenario, the empty product attribute on the subordinate p element might
be considered an error, because it does not explicitly contain the contain the condition
of its parent. If copied and pasted elsewhere, its original conditional nature might be
lost because it was dependent upon its parent to inherit the Product A condition.

Normally, an empty attribute indicates to inherit ancestor conditions by default, and this
situation is not considered an error. Therefore, rule #3 is frequently disabled by users.

Rule #4 - Empty attribute not allowed
This rule flags any attributes that are not permitted to be unspecified, indicated by the
lack of a “<no value>” inclusion in the active validation scheme. That is, if a particular
attribute in the scheme does not have “<no value>” included in the list of valid values,
the attribute is not permitted to be empty.

This rule is a largely a specialized version of rule #1, provided for convenience. For
more information on rule #1, see Validation rule #1 - Simple syntax on page 3-17.

User Guide (v1.0) ABCM Plugin for FrameMaker®

20 Filtering, Coloring, and Validating

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 21

4: Scheme Setup And
Other Main Settings

Schemes are the configuration workhorse of the plugin, where you specify exactly how
you want it to color, filter, and/or validate your content. Rather than making manual
decisions about how to process your content with each action, you put this logic into
schemes and simply run the desired scheme whenever necessary.

You can have as many schemes as you want, and even share them at an enterprise
level. For more information, see About the main settings file on page 2-8.

General information about schemes and categories
In most respects, a scheme is little more than a collection of attributes and values, and
perhaps some additional options. When run, the plugin navigates the document
structure tree(s) and stops at each element, comparing it to the attributes and values in
the scheme. If they match, some respective action occurs, such as the coloring of the
element during coloring or the preservation of content during filtering.

Because of their similarities, the three scheme types (coloring, filtering, validation) look
very much the same and use the same editor (ABCM > Main Settings > Schemes). The
scheme editor includes a drop-down menu that allows you to switch between scheme
type that you are editing. All schemes are stored in the main settings file, described in
more detail under About the main settings file on page 2-8.

The plugin also provides a higher level of categorizing schemes, known simply as
scheme categories. A category is a collection of any number of coloring, filter, and
validation schemes, and serves as a mechanism to help you keep schemes in order.
The way you categorize schemes has no effect on how the plugin operates. Rather, it is

User Guide (v1.0) ABCM Plugin for FrameMaker®

22 Scheme Setup And Other Main Settings

a basic feature that allows you to group common schemes together and prevent
scheme lists from getting too long.

Although all schemes are constructed in a similar manner, the way they behave during
processing may differ. For example, the details of attribute/value matching differs
between coloring and filter schemes. These details are explored in the individual
sections about each scheme type.

NOTE: Schemes are completely document- and book-independent. You
can run any scheme of any type on any document or book. In most
cases, you will have a number of schemes that you run on any
given document set, and you may share schemes between
different document sets. The manner in which you name and
categorize your schemes is entirely up to you and no scheme is
ever restricted to a particular file.

General scheme editing procedures
All schemes are edited using the scheme editor (ABCM > Main Settings > Schemes). A
scheme is mostly just a collection of attributes and values, and the three scheme types
look similar to each other in many ways. The following are some general tips to keep in
mind while editing schemes:
• A scheme can contain multiple attributes and unique values for each. When you are

looking at the attributes and values on the right, the list of values will always reflect
the currently selected attribute only.

• When you add attributes and values to a scheme, the plugin provides a dialog box
with a drop-down menu. This menu is prepopulated based on information found in
your master attribute library. For more information, see Master attribute library on
page 4-37.

• When you add coloring rules, the plugin provides a dialog box with a drop-down
menu. This menu is prepopulated based on information found in your master colors
list. For more information, see Master colors list on page 4-37.

• Like all ABCM dialog boxes, you can double-click an item in a scroll box to edit it.
• All schemes may include a set of advanced options, accessible by clicking the

Advanced Options button. For more information on these options, see Advanced
scheme options on page 4-34.

Coloring schemes
Coloring text according to conditions is mostly an authoring convenience, allowing you
to see visually where your conditions are assigned. In this respect, the purposes of

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 23

coloring with the ABCM plugin are exactly the same as those associated with native
conditional text.

A coloring scheme includes one or more “rules,” each of which indicates a color and the
parameters to match in order to apply that color. The order of these rules is often
critically important for achieving the desired results. For more information, see Coloring
rule order on page 4-26.

While similar in concept to native conditional tag indicators, the process of conditional
coloring with ABCM is functionally much different. Coloring with the plugin is a highly-
customizable and specific process. With your schemes, you must indicate exactly what
conditions should receive what color, including any details about condition overlap.
There is no automatic magenta text with the plugin... if you want overlaps colored a
certain way, you must specify as such. Furthermore, a scheme only colors the
conditions you want, and ignores any others that might exist. In this manner, it is very
different than native conditional text, which forces you to view one coloring pattern only,
and all conditions at a time or none at all.

Because of this flexibility, you can have as many schemes as you want for any
particular document or structure definition, and run whichever one applies the particular
coloring pattern you want to see at the time. It is common to color content in different
fashions depending on what you want to see, particularly if you have many conditions
and/or conditional overlaps.

NOTE: For more information on running a coloring scheme, see Coloring
on page 3-15.

Basic coloring scheme behavior
When you run a coloring scheme, the process starts at some element, and steps
logically throughout each descendant element performing the coloring function. At each
element, the plugin stops and compares the attributes/values on the element to those
in the rules of the scheme. It goes down each rule in order, looking for a match. It
applies the color assigned to the first matching rule it finds, if any. Once a rule is applied
or all rules have been exhausted, the plugin steps to the next element and does the
same thing until all elements are completed.

If you run coloring on a whole document or book, the starting point is the highest-level
element. If you run it on a selection, the starting point is the selected element, or the
element that contains the insertion point. All coloring is launched through the ABCM >
Coloring menu or associated shortcuts. You are encouraged to become accustomed
to the shortcut for coloring a selection (Esc 1 1), because you may use it frequently to
refresh the area in which you are working.

User Guide (v1.0) ABCM Plugin for FrameMaker®

24 Scheme Setup And Other Main Settings

Coloring scheme details
To create and’/or edit a coloring scheme, you should work in the scheme editor (ABCM
> Main Settings > Schemes). Be sure that you have the correct category and scheme
type selected. For more information on general scheme editing procedures, see
General scheme editing procedures on page 4-22.

A coloring scheme includes one or more rules, each of which contains a set of
attributes and values. At a basic level, when the attributes/values of a rule match those
on an element, the element receives the color assigned to the rule. There are, however,
a number of technical details concerning coloring schemes, described in the following
list:
• Attribute/value matching criteria - Rule matching behavior is very extensible with

the Match all values option. For more information, see Attribute/value matching
criteria on page 4-24.

• Rule order - Rule order is very important, because for any given element, the rules
are processed in the order which they appear, and only the first matching rule is
applied. For a more detailed explanation, see Coloring rule order on page 4-26.

• <no value> and <any value> - These standard items can be added to the values
for any attribute, and are important to understand. For more information, see <no
value> and <any value> in a coloring scheme on page 4-27.

• Other formatting capabilities - Coloring rules support the same additional style
options as native conditional text, such as underlining and strikethrough. These
options are specified on a rule-by-rule basis and are applied as simple format
overrides, like coloring.

• Changing a rule color - The color assigned to a rule can be changed by selecting
the rule in the list and double-clicking it or clicking Edit.

• Override coloring of child elements - This rule option causes all coloring of any
child elements to be skipped, if the rule is matched. All child elements will receive
the color of the matched element.

Attribute/value matching criteria

During coloring, each element is tested against each coloring rule in the scheme, until
one matches or the rules are exhausted. Each rule has an independent setting called
“Match all values,” which significantly affects the criteria required for an attribute/value
match, as follows:
• The option is checked - If “Match all values” is checked, every single attribute and

specified value in the rule must appear on the element in order to make a match.
The element may have more attributes and values than appear in the rule, but it
must at least have all those specified in the rule.

• The option is NOT checked - If the option is not checked, the rule will match if a
single value from a single rule attribute is matched.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 25

For example, consider the following element:

...and consider the following rule:

This rule will match whether or not “Match all values” is checked, because it matches at
least one value of the outputformat attribute, and it also happens that every value in
the rule is found on the element. The rule doesn’t care about the product attribute at
all, because it isn’t specified in the rule.

Similarly, consider the following rule:

This rule will also match in either case, because every attribute and value in the rule is
found on the element, so the state of the “Match all values” checkbox doesn’t matter.

Conversely, consider the following rule:

This rule is different. If “Match all values” is unchecked, the rule will match, because at
least one value in the rule is found on the element. However, if it is checked, the rule
will not match, because “ProductC” is not found in the product attribute of the
element.

Rule color Attribute(s) Value(s)

Green outputformat PDF

Rule color Attribute(s) Value(s)

Green outputformat PDF

product ProductA

Rule color Attribute(s) Value(s)

Green outputformat PDF

product ProductA
ProductC

User Guide (v1.0) ABCM Plugin for FrameMaker®

26 Scheme Setup And Other Main Settings

The “Match all values” option and rule order are your primary tools for designed
detailed and effective coloring schemes. For more information on rule order, see
Coloring rule order on page 4-26.

Coloring rule order

Rule order in a coloring scheme is critically important, because for each element
evaluated, the plugin will choose the first rule that matches and ignore the rest.
Therefore, you must be sure that your most “specific” rules are near the top, and the
more “general” rules are near the bottom.

For example, suppose you want to color all your “ProductA” content red, and all your
“ProductB” content green. And, to indicate a mix of conditions, you want to color
content for both products in blue. In this case, you might be tempted to create the
following scheme:

At first glance, this scheme seems to have all the rules you need. More than likely,
though, you will never get to see your blue color applied. For an explanation, consider
the following element:

This element is one that should be colored blue, according to your original intentions.
However, the plugin will never get to the blue rule (#3), because the first rule (red) will
always match first. Its only criterion is that the product element contains “ProductA”,
which this element does. So, it colors the element red and never gets to your blue rule.

Rule # Rule color Attribute(s) Value(s)

1 Red product ProductA

2 Green product ProductB

3 Blue product ProductA
ProductB

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 27

To make a scheme like this work, you must be more specific with rule order and use the
“Match all values” option appropriately. Consider the same basic scheme, with the rules
and options rearranged:

Now, the “composite product” rule is at the top, so it will be evaluated first. And, it is
forced to match all the values in order to qualify. In this case, the Section element will
be properly colored blue, and any elements for ProductA or ProductB only will be
colored red or green, respectively.

<no value> and <any value> in a coloring scheme

Like any scheme type, you can specify “<no value>” or “<any value>” for any attribute.
These values, which automatically appear in the applicable drop-down menus, mean
literally what they say: no value or any value. “No value” is synonomous with an empty
attribute, and “any value” is synonymous with an attribute that contains any value.

As an example, consider the following element:

...and consider the following rule:

This rule will match, because the product attribute contains any value. The converse
is true, in that a specification of “<no value>” would only match if the attribute is empty.
Note the following about <any value>/<no value>:

Rule # Rule color Attribute(s) Value(s) Options

1 Blue product ProductA
ProductB

Match all values

2 Red product ProductA

3 Green product ProductB

Rule color Attribute(s) Value(s)

Green product <any value>

User Guide (v1.0) ABCM Plugin for FrameMaker®

28 Scheme Setup And Other Main Settings

• If <any value> and <no value> both appear for any given attribute, it means literally
“color me if I have this attribute, and it is either empty or specified.” In other words,
it will color any element based on the mere presence of an attribute, regardless of
its contents.

• <any value> and the “Match all values” option are generally incompatible, because
the option requires an explicit list to work logically.

Where the colors come from

During a coloring action, if a rule matches, the plugin attempts to find the associated
color by name in the document being processed. If it finds the color, it will retrieve the
associated color definition and apply it. If it does not, it will warn you that the color does
not exist.

For this reason, it is important that you specify colors in your schemes that your
template(s) actually contains. To help prevent errors, you can customize the drop-down
list of colors that appears in the scheme editor to reflect the colors that are valid for your
documents. For more information, see Master colors list on page 4-37.

Other coloring scheme options and features

Note the following miscellaneous items about coloring schemes:
• <refresh EDD> as a color - The “<refresh EDD>” option always appears in the

colors list, and can be used in the place of a color for any rule. This option will
cause the plugin to refresh the EDD definition for any element it matches, removing
all format overrides for that element and any descendants. No colors are applied,
unless the EDD definition directs as such.

• <skip> as a color - The “<skip>” option always appears in the colors list, and can
be used in the place of a color for any rule. This option will cause the plugin to do
nothing if the rule matches, and simply step to the next element. This option is
intended for certain specialized use only and may not be commonly found in
schemes.

• Override coloring of child elements - This option is available on a rule-by-rule
basis, near the “Match all values” option. If a rule matches and this option is
specified, it causes the color to be applied to the respective element and all
descendant elements, with no consideration for descendant attribute conditions. In
essence, it causes the plugin to discontinue its walk down the current branch being
processed, and back up to start down the next logical branch. Any descendant
elements therefore remain unprocessed.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 29

Filter schemes
Filtering is the process by which you produce conditional output. It is loosely analogous
to the “Show/Hide” process for native conditional text, with far more flexibility and
options.

A filter scheme is mostly a simple collection of attributes and values. During the filtering
process, the plugin examines each element in a logical fashion, starting at the highest-
level element and walking logically throughout each branch. If the attributes on the
element match those in the scheme, the element is preserved. If they do not, the
element and all descendants are removed or hidden.

A filter scheme is structurally more simple than a coloring scheme because it has no
rules, only one set of attributes and values. This difference is because the filtering
process is a simple yes or no decision... not one where multiple colors might need to be
evaluated and applied.

Note the following important items about filter schemes:
• You are specifying content to “keep,” not content to hide - This aspect of filter

schemes makes them fundamentally different than showing/hiding native
conditional text. With the native Show/Hide dialog box, you must focus on what
conditions to hide, in order to produce the output you want to keep. This logic is
counterintuitive and is overcome by filter schemes, in which you specify what you
want to stay in your output. All other conditions not specified are either ignored or
hidden by default, depending on the logic of the scheme.

• Attributes not specified in the scheme are ignored - Only those attributes found
in the scheme are evaluated, and only then if the respective element contains them.
All other attributes on the element are ignored, regardless of their contents. In this
way, you can set up schemes that only consider certain conditions. This process is
is much different than showing/hiding native conditional text, in which case you
must always consider all conditions every time you want to show/hide, because
they must all be dealt with in the Show/Hide dialog box.

• Matching requires at least one value match for each scheme attribute - If at
least one value matches on the element between the attributes in the scheme and
the attributes on the element, the element is preserved. That is, for each attribute in
the scheme, at least one value must be found at the element, otherwise it is
removed. For examples of this behavior, see General filter scheme matching
behavior on page 4-30.

• <no value> and <any value> - These items, which mean literally what they say,
may be critically important for proper scheme behavior. For more information, see
<no value> and <any value> in filter schemes on page 4-31.

NOTE: For general information on running a filter, see Filtering on
page 3-11.

User Guide (v1.0) ABCM Plugin for FrameMaker®

30 Scheme Setup And Other Main Settings

General filter scheme matching behavior
The logic for matching (versus discarding) during a filter action is generally simple. For
each element evaluated, the following rules apply:
• If an attribute is on the element and in the scheme, that attribute is evaluated. At

least one value must match between the two, otherwise the element is flagged for
removal.

• If an attribute in the scheme does not exist on the element, or vice versa, it is simply
ignored.

For example, consider the following element:

...and consider the following scheme setup:

During evaluation, the Section element will be preserved. It has an outputformat
attribute which is also contained in the scheme, and at least one value (PDF) matches
between the two. The product attribute is not included in the scheme, so the scheme
doesn’t care about it at all.

Conversely, the following scheme setup would cause the removal of the element:

The following scheme setup would allow the preservation of the element, because at
least one value matches on both scheme attributes:

Attribute(s) Value(s)

outputformat PDF

Attribute(s) Value(s)

outputformat HTML

Attribute(s) Value(s)

outputformat PDF

product ProductA

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 31

The same applies to the following scheme. This scheme adds another value to match
on the product attribute that the element doesn’t have, but it doesn’t matter because
the ProductA value does match:

The following scheme would also preserve the element. The customer attribute is
never evaluated because it doesn’t exist on the element:

The following scheme, however, would not match and would flag the element for
removal. Even though the outputformat attribute makes a match, the product
attribute does not, and at least one match must occur for all attributes evaluated:

<no value> and <any value> in filter schemes
Like any scheme type, you can specify “<no value>” or “<any value>” for any attribute.
These values, which automatically appear in the applicable drop-down menus, mean
literally what they say: no value or any value. “No value” is synonymous with an empty
attribute, and “any value” is synonymous with an attribute that contains any value.

These items, especially “<no value>”, may be critically important for a properly-
functioning filter scheme. An “unconditional” situation is frequently indicated by an
empty attribute, analogous to the native conditional text practice of simply assigning no
tag to unconditional content. Unlike native conditional text, however, the plugin does
not mandate this assumption, and if you intend to use empty attributes to denote an
unconditional situation, you must provide for this convention in your schemes using
“<no value>” as applicable.

As an example, consider the following two elements:

Attribute(s) Value(s)

outputformat PDF

product ProductA
ProductC

Attribute(s) Value(s)

outputformat PDF

customer CustomerA

Attribute(s) Value(s)

outputformat PDF

product ProductC

User Guide (v1.0) ABCM Plugin for FrameMaker®

32 Scheme Setup And Other Main Settings

The first element is designated for PDF output, while the second element has no
specification. This convention would typically indicate that the second element is
unconditional with regards to output format, and should always be preserved through
any outputformat-based filter. Assuming this is the case, the scheme must specify
the following to produce PDF output:

With this scheme, both elements will be preserved. If the scheme failed to include “<no
value>”, the second element would be filtered out, because “PDF” does not match a
literal state of no value. Only the special “<no value>” flag does. Therefore, any
architecture that uses empty attributes to denote an unconditional state must be
incorporated with schemes that use “<no value>” to designate as such.

The “<any value>” flag is similar in concept, except that it matches if the respective
attribute is populated with any value at all. The “<any value>” flag is likely to be used
much less often, if at all.

Filtering out elements by type, using unique attribute names
By way of scheme setup, the plugin provides a way to filter out all elements with a given
attribute, regardless of its contents. This feature provides a way of filtering all elements
of a certain type in a blanket fashion, if they are elements that you want removed from
the output regardless of attribute contents.

A common usage of this feature is with authoring comments, when a structure
definition reserves a special element for them. If you put authoring comments directly in
your text, it is likely that you will want to filter them all out before producing deliverable
output. And, it is likely that you will want them all out period, without any regard for
attribute contents.

As an example, consider the following element:

Attribute(s) Value(s)

outputformat <no value>
PDF

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 33

Before producing output for customers, it is likely that the author would like to remove
all Comment elements like this completely, regardless of attribute contents. To
accomplish this with a filter scheme, you can specify an attribute and leave the Values
box blank. This effectively says to the plugin, “There are no valid values at all for this
attribute, so the attribute itself is invalid. Whenever the attribute is encountered,
therefore, just remove the parent element.” The scheme dialog box might look
something like the following:

To make this feature work effectively, the attribute you choose should be unique to the
element(s) you are trying to filter out. For example, the attribute chosen in this example
is Author. This scheme setup will cause the removal of any element with an Author
attribute, so if you only intend for Comment elements to be removed in this fashion, the
Author attribute must be unique to Comment elements.

The use of this convention allows great flexibility with storing non-publishable data in
your documents, because once a scheme is set up, you can be assured that it will all
be removed during filtering, every time. The risk that an errant comment will remain in
the document because of misassigned conditional text is eliminated.

User Guide (v1.0) ABCM Plugin for FrameMaker®

34 Scheme Setup And Other Main Settings

Validation schemes
Validation schemes direct the behavior of attribute validation feature, and are
essentially a collection of the attributes and valid values that you use for your
conditions. For a complete explanation of how the validation feature works, see
Attribute validation on page 3-16.

Validation schemes are constructed with the same editor as other schemes, using the
standard controls. Note the following about validation schemes:
• Because a validation scheme is a collection of valid attributes and values, you

should have a separate scheme for each document set that uses different attributes
and values for conditions. In other words, for any set of documents that uses the
same exact attributes and values for setting conditions, there should be one unique
validation scheme.

• <no value> and <any value> may be specified for attributes in a validation scheme,
and like other schemes, they mean literally what they say. If you specify <no value>
for an attribute, that attribute is not permitted to contain any values. If you specify
<any value>, the attribute can contain any value, but it cannot be empty. Either of
these specifications should appear alone, because combining them with explicit
values and/or each other is illogical and would serve no purpose.

• The advanced scheme options apply, as with all schemes. For more information,
see Advanced scheme options on page 4-34.

Advanced scheme options
For any scheme, you can access the advanced options by clicking the Advanced
Options button under the schemes list, in the scheme editor. This section describes
the options available, on a scheme-by-scheme basis.

NOTE: Each scheme has its own independent set of advanced options.
When you edit these options, you are editing them for the selected
scheme only.

Advanced options include:
• When evaluating attribute values, consider EDD-applied defaults - See

Considering EDD-applied defaults on page 4-35.
• When evaluating attributes and values, ignore case-sensitivity - See Ignoring

case-sensitivity on page 4-35.
• Consider whitespace as an attribute value delimiter - See Attribute values

delimited by whitespace (Tokenized strings) on page 4-35.
• Process all flows - See Processing all flows on page 4-37.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 35

Considering EDD-applied defaults
In an EDD, you can specify default values for attributes which appear in the Structure
View in italics. For example, the following note element has customer attribute with a
default value of “WestStreet” assigned:

While they do appear in the Structure View, default values aren’t actually “real” and do
not appear in the FrameMaker attribute editor. By default, ABCM will ignore them while
processing, unless you check this advanced scheme option. If you do check it, all
default values are regarded the same as any value that was explicitly set.

Ignoring case-sensitivity
In most processes involving XML and other structured content, case-sensitivity is
generally the rule. This is especially true when referring to markup qualities, such as
attribute names and values. By default, all processing by ABCM adheres to strict case-
sensitivity when comparing scheme parameters to attributes and values in your
documents.

However, if you check the “ignore case-sensitivity” advanced option, ABCM will
completely ignore the case of attributes and values during evaluation. For example, the
attributes PRODUCT, Product, and product will look the same.

NOTE: This option is always off by default, and is recommended for
special situations only. The case-sensitivity of markup is usually
very important.

Attribute values delimited by whitespace (Tokenized strings)
The FrameMaker interface makes it convenient to manage multiple values on a single
attribute, separating individual values with a carriage return in the attribute editor and
the Structure View. For example, the following product attribute has three separate
values:

User Guide (v1.0) ABCM Plugin for FrameMaker®

36 Scheme Setup And Other Main Settings

This convention is easily managed with a Strings-type attribute in an EDD and is
recognized by ABCM. However, in many applications (especially those dealing with
XML), multiple values are found on a single line, delimited with whitespace. For
example, the same “conditionalization” could appear as follows:

With this advanced option checked, ABCM will recognize the individual values in this
type of combined string (also called a tokenized string). That is, ABCM will recognize all
individual tokens separated by whitespace, such that the following sample elements all
appear the same to the plugin:

When checked, this option applies to all attributes and values, and only applies to
tokenized values delimited by whitespace. Without this option checked, the default
behavior is to ignore individual tokens and consider whole strings only.

ABCM Plugin for FrameMaker® User Guide (v1.0)

Scheme Setup And Other Main Settings 37

Processing all flows
By default, a scheme will process the main flow only, normally flow A. With this option
checked, however, all structured flows will be processed independently. This includes
flows in text frames and on the master and reference pages. Any unstructured flows are
ignored in either case.

Master attribute library
By selecting Main Settings > Attribute Library, you can define default attributes and
values to populate the drop-down dialog boxes in the scheme editor. For example,
when you add an attribute to a scheme, the drop-down dialog box will contain the
names of any attribute specified in this library. This list is a scheme editing convenience
only and has no effect on the coloring, filtering, or validating of content. It is provided
because the same attributes and values are typically reused between multiple
schemes, and spelling and case-sensitivity are very important.

NOTE: The scheme editor dialog boxes will allow you to type any values
you want. You are not restricted to the entries in the master
attribute list.

Master colors list
By selecting Main Settings > Colors, you can define a set of default colors to appear
in the drop-down dialog box when adding a new rule to a coloring scheme. This feature
is provided as a convenience because the same colors are typically reused frequently,
and spelling and case-sensitivity are very important.

This list is intended to enhance the scheme editing process only. It has no effect on the
coloring feature of the plugin, and it has no inherent correlation with any templates or
color definitions. If you use it, you should simply populate it with the names of the colors
that appear in your templates, especially those that you intend to use in coloring
schemes. In the scheme editor, you can always type any color you want, and you are
never restricted to this list alone.

Migrating Sourcerer settings
If you are a Sourcerer user, ABCM provides a means of automatically migrating your
Sourcerer master settings to ABCM. These settings include:

User Guide (v1.0) ABCM Plugin for FrameMaker®

38 Scheme Setup And Other Main Settings

• All Sourcerer filter, coloring, and validation schemes
• The current Sourcerer master attributes library

To perform the migration, you should open your Sourcerer master settings file and
select ABCM > Main Settings > Migrate Sourcerer Settings. Note the following
about running this function:
• The settings will be migrated to the ABCM main settings file that your preferences

point to. Following the migration, you should be able to open the scheme editor and
see them.

• The schemes will be placed in a new category named “Sourcerer.” If that category
already exists, ABCM will add a number to the category name and increment it as
necessary to find a unique name. For example, “Sourcerer2”, “Sourcerer3”, etc.

• The master attributes will be transferred as-is. If any of the attributes currently exist
in your ABCM settings, any new values for them from the Sourcerer settings will be
appended.

• Sourcerer did not have a feature comparable to the colors list. You will need to
create that manually with ABCM.

At a core functional level, ABCM works very similarly to Sourcerer. In most cases, you
should be able to migrate your settings and begin using ABCM in the place of
Sourcerer right away.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 39

5: External Calls to
ABCM

Like many FrameMaker plugins, you can make external calls to ABCM to invoke certain
plugin activities, often for purposes of automation. Specifically, you can call this plugin
to:
• Set the active filter, coloring, and validation schemes (SetScheme on page 5-50)
• Set various options for filtering and other processing (SetParm on page 5-48)
• Filter-check an element (FilterCheckElement on page 5-44)
• Filter a document or book (FilterFile on page 5-45)
• Restore a document or book from a source-file filter (RestoreFile on page 5-47)
• Color an element (ColorElement on page 5-41)
• Color a document or book (ColorFile on page 5-43)
• Validate an element (ValidateElement on page 5-51)

These functions are fully exposed through the FrameMaker API and allow you to
programmatically mimic the behavior of the plugin as used interactively through the
GUI.

How to send an external call to ABCM
To call ABCM, you can use one of three methods:

User Guide (v1.0) ABCM Plugin for FrameMaker®

40 External Calls to ABCM

• With the FDK F_ApiCallClient() function, from another API client If you are
working on another FDK client, you can use F_ApiCallClient() to call ABCM.
This function is part of the normal FDK library and does not require any changes to
your normal project settings. For more information on the function itself, see the
FDK Developer’s Reference provided by Adobe with the FDK.

• With FrameScript FrameScript®, a scripting tool by Finite Matters, Ltd®, has a
comparable function for calling FDK clients, CallClient. When called from
FrameScript, ABCM behaves identically to a regular API call.

• With FrameAC FrameAC by Mekon® (www.mekon.com) is a COM-based utility
that enables developers to use Visual Basic to control FrameMaker. FrameAC also
provides the ability to script calls to other API clients.

For any supported operation, you pass a string to ABCM which contains a command
and any applicable parameters, and ABCM sends back a numeric code indicating the
results. The syntax of these strings is the same for either API or scripting calls, and is
explained in detail in this document.

NOTE: The call descriptions and examples in this document are written
from an FDK/API perspective, using F_ApiCallClient(). If you
are using FrameScript or FrameAC, the basic call syntax will be the
same, sent using the mechanism supported by the respective tool.

General information on external calls
Before you attempt to call ABCM, note the following:
• Certain commands require that you specify a document or book, which can be done

by one of three methods. For more information, see Specifying document and book
arguments on page 5-41.

• The default delimiter string between arguments in a call to ABCM is three dashes
(---). This delimiter can be changed in your preferences. In this document, the
syntax descriptions of external calls use the default delimiter, which you should
adjust accordingly if you decide to change the delimiter. For more information on
setting the delimiter string, see Preferences on page 2-7.

• Several calls to ABCM return zero (0) to indicate a command failure, consistent with
the behavior of other FDK functions. However, F_ApiCallClient() also returns zero if
it fails to communicate at all with the specified API client. If you aren’t sure whether
your calls are reaching ABCM, you can call the special Hello command to verify
that communications are getting through.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 41

• With the exception of scheme categories and names, call string arguments are
generally not case-sensitive. For example, to set an active scheme, you can send
any case variation of the SetScheme command name, such as SETSCHEME or
SetScheme.

• To effectively use the external interface to ABCM, you should be familiar with the
functionality and workflow of the plugin through the GUI.

Specifying document and book arguments
When a document or book identifier is required, you may use any of the following three
methods:
• An object handle ID - The integer form of the F_ObjHandleT object ID for the file.
• A filename - A non-qualified filename, such as MyDocument.fm.
• A file path - A fully-qualified file path, such as:

C:\MyDocs\MyDocument.fm

With this method, you may substitute forward-slashes for backslashes. For
example:

C:/MyDocs/MyDocument.fm

In all cases, the file must be currently open. ABCM will not open any files.

Specifying Boolean arguments
When an argument requires a Boolean true or false, you can specify it as follows:
• For true, you can specify 1, true, or any word that begins with “t”, including just t.
• For false, you can specify 0, false, or any word that begins with “f”, including just

f.

Boolean arguments are not case-sensitive.

Call reference
This section details the external calls you can make to ABCM.

ColorElement
Colors an element according to the active coloring scheme.

User Guide (v1.0) ABCM Plugin for FrameMaker®

42 External Calls to ABCM

Syntax
 F_ApiCallClient("ABCM",
 "ColorElement---Document---ElemId---IncludeDescendants---DoWarnings");

where:

Usage description

ColorElement evaluates the specified element against the active coloring scheme
and applies any formatting as applicable. The command requires that an active
coloring is scheme set, perhaps with SetScheme.

Returns

Document Document that contains the element to be colored. For more
information on specifying this parameter, see Specifying
document and book arguments on page 5-41.

ElemId The F_ObjHandleT object ID of the element to color.

IncludeDescendants (Boolean) Indicates whether to evaluate and color any
descendant elements. If set to False, descendant elements
may receive any coloring applied to the main element only.
For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-41.

DoWarnings (Boolean) Indicates whether to perform interactive user
prompting. If set to False, no message boxes are produced
under any conditions, including critical errors.
For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-41.

Value Meaning

0 Communication with ABCM appears to have failed. Use Hello to test
connectivity.

1 Coloring occurred successfully.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad document argument. See Specifying document and book arguments on
page 5-41.

105 Bad element ID.

106 Bad category and/or scheme name. This error will occur if an active coloring
scheme is not set before the command is run.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 43

ColorFile
Colors a document or book according to the active coloring scheme.

Syntax
F_ApiCallClient("ABCM", "ColorFile---File---DoWarnings");

where:

Usage description

ColorElement runs the active coloring scheme on the specified document or book.
The command requires that an active coloring scheme is set, perhaps with
SetScheme.

Returns

116 Coloring failed for an unknown reason.

117 Interactive user cancellation occurred.

Value Meaning

File Document or book to be colored. For more information on
specifying this parameter, see Specifying document and
book arguments on page 5-41.
NOTE: If you specify a book, only currently-open

chapter files will be processed. Closed book
components are ignored.

DoWarnings (Boolean) Indicates whether to perform interactive user
prompting. If set to False, no message boxes are produced
under any conditions, including critical errors.
For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-41.

Value Meaning

0 Communication with ABCM appears to have failed. Use Hello to test
connectivity.

1 Coloring occurred successfully.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad file argument. See Specifying document and book arguments on page 5-41.

User Guide (v1.0) ABCM Plugin for FrameMaker®

44 External Calls to ABCM

Hello
Tests whether ABCM is initialized and receiving external calls.

Syntax
F_ApiCallClient("ABCM", "Hello");

Returns

FilterCheckElement
Checks the specified element against the active filter scheme and returns whether the
element should be “filtered out” or not.

Syntax
F_ApiCallClient("ABCM", "FilterCheckElement---Document---ElemId");

106 Bad category and/or scheme name. This error will occur if an active coloring
scheme is not set before the command is run.

108 No structure found in main flow. This error only occurs if you are processing a
single document, and the “Process all flows” scheme option is turned off in the
active scheme.

116 Coloring failed for an unknown reason.

117 Interactive user cancellation occurred.

Value Meaning

Value Meaning

0 ABCM is not initialized and/or communication failed. Possible causes include:
• ABCM is not running at all. Check the FrameMaker interface for an ABCM

menu.
• Your call uses a syntax that differs from the plugin name in the maker.ini

file. In the ABCM installation instructions, the following line is to be entered
into maker.ini:
ABCM=Standard,ABCM,WestStreet\ABCM.dll,structured

Whatever string you use to call ABCM (as the first argument of
F_ApiCallClient() must match the name assigned there.

1 ABCM is ready.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 45

where:

Usage description

FilterCheckElement evaluates a single element against the active filter scheme
and determines whether the element should be hidden, or in other words, filtered out. It
does not perform any filtering action itself, returning a flag only. This command requires
a valid, active filtering scheme, perhaps set with SetScheme.

NOTE: If you want ABCM to perform a whole file filter, including all the
functionality associated with an interactive GUI filtering action, use
FilterFile instead.

Returns

FilterFile
Filters a document or book according to the active filtering scheme and current filter
parameters.

Document Document that contains the element to be checked. For
more information on specifying this parameter, see
Specifying document and book arguments on page 5-41.

ElemId The F_ObjHandleT object ID of the element to check.

Value Meaning

0 Element should be preserved.
NOTE: This value may also be returned if the currently-active filter scheme

is not valid. Be sure to call SetScheme successfully before running this
command the first time.

1 Element should be filtered out.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad document argument. See Specifying document and book arguments on
page 5-41.

105 Bad element ID.

106 Bad category and/or scheme name. This error will occur if an active filtering
scheme is not set before the command is run.

User Guide (v1.0) ABCM Plugin for FrameMaker®

46 External Calls to ABCM

Syntax
F_ApiCallClient("ABCM", "FilterFile---File---DoWarnings");

where:

Usage description

FilterFile filters an entire document or book and returns the object ID of the filtered
file. The filter occurs in accordance with the current filter settings which can be set
beforehand with SetParm and SetScheme. The filter scheme and other settings can
have a significant impact on how the filter behaves and you should be sure that you
understand and set them properly.

If you filter a single document successfully, the command returns the ID of the filtered
document. In the case of a duplicate file filter, this is the ID of the new, filtered file. For a
source file filter, it returns the same ID that you originally sent (if you sent the file
parameter in ID form).

If you filter a book, the behavior is the same. Note, however, that a duplicate file book
filter requires a target folder to receive the duplicated book. It is critically important that
you set this parameter before running the filter and make absolutely sure that you have
done it correctly. The filter will overwrite any files it finds in the target folder. You can set
the target folder path with SetParm, along with other important filter settings.

In the unlikely event that a book filter fails in the middle of processing, you should
capture this error and close all affected files without saving changes. A failure in the
middle of a book filter will leave your files in an unpredictable state.

For more information on filter types, see Filter types - Source versus duplicate file on
page 3-12. For more information on other filter options, see Launching a filter on
page 3-12.

File Document or book to be filtered. For more information on
specifying this parameter, see Specifying document and
book arguments on page 5-41.
NOTE: If you specify a book, all book components

must be currently open.

DoWarnings (Boolean) Indicates whether to perform interactive user
prompting. If set to False, no message boxes are produced
under any conditions, including critical errors.
NOTE: Interactive prompting does not include the Filter

dialog box.
For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-41.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 47

NOTE: Following a source file filter, you can restore the document or book
with RestoreFile.

Returns

RestoreFile
Restores a document or book following a source-file filter.

Syntax
F_ApiCallClient("ABCM", "RestoreFile---File");

Value Meaning

0 Communication with ABCM appears to have failed. Use Hello to test
connectivity.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad file argument. See Specifying document and book arguments on
page 5-41.

106 Bad category and/or scheme name. This error will occur if an active filtering
scheme is not set before the command is run.

111 An interactive user cancellation occurred, or some other unknown filter error
occurred.

112 The file could not be duplicated, for an unknown reason. This error is only
applicable to duplicate file filters.

113 One or more book components are not open, applicable only to book filters.

114 The specified path for the filtered book is the same as the book to be filtered.
The filter must abort because it would otherwise overwrite the original book
with the filtered book, permanently deleting content. This error is only
applicable to duplicate file book filters. For more information on setting this
parameter, see SetParm

115 The specified path for the filtered book is inaccessible or does not exist. This
error is only applicable to duplicate file book filters. For more information on
setting this parameter, see SetParm.

Any number
over 1000

An integer form of the object ID for the filtered file, indicating a successful
filter.

User Guide (v1.0) ABCM Plugin for FrameMaker®

48 External Calls to ABCM

where:

Usage description

RestoreFile removes the Hidden condition from a document or book as applied
during a source-file filter. This command is not applicable if you use duplicate-file filters.
For more information, see Restoring a document or book on page 3-14.

Returns

SetParm
Sets a parameter that affects ABCM processing, such as filter parameters.

Syntax
F_ApiCallClient("ABCM", "SetParm---Parm---Value");

where:

File Document or book to be restored. For more information on
specifying this parameter, see Specifying document and
book arguments on page 5-41.
NOTE: If you specify a book, only currently-open book

components are restored. ABCM does not open
any files.

Value Meaning

0 Communication with ABCM appears to have failed. Use Hello to test
connectivity.

1 Restoration occurred normally..

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad file argument. See Specifying document and book arguments on
page 5-41.

Parm

and
Value

Parameter and value to set. For a list of parameters and
valid values, see, see Usage description on page 5-49.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 49

Usage description

SetParm is a means to set important parameters via external calls. These parameters
would typically be set by a user in a dialog box during an interactive session, and
represent important settings that can significantly affect how ABCM processes content.

The following table lists the parameters supported by this command and the valid
values for each:

Parameter Description Valid values

Filter_Type Filter type, normally set in
the Filter dialog box. See
Launching a filter on
page 3-12.

• D or Duplicate
• S or Source

Filter_SaveFirst Option to save all files prior
to a filter action, normally set
in the Filter dialog box. See
Launching a filter on
page 3-12.

Boolean true/false. See
Specifying Boolean
arguments on page 5-41

Filter_RemoveOverrides Option to remove format
overrides following a filter
action, normally set in the
Filter dialog box. See
Launching a filter on
page 3-12.

Boolean true/false. See
Specifying Boolean
arguments on page 5-41

Filter_Path Target path for a
duplicate-file book filter,
normally set graphically in
the Filter dialog box. For
more information, see
Launching a filter on
page 3-12.
NOTE: This parameter

must be set before
you can run a
duplicate-file book
filter

A valid folder path. Note
the following:
• You can optionally use

forward slashes
instead of back
slashes. For example:
C:/MyDocs/

• You MUST include the
trailing slash. See the
example above.

• You MUST NOT
include the target file
name. Specify the
folder path only.

• You should be VERY
CAREFUL to set this
property correctly. A
book filter will
overwrite files in the
target folder.

User Guide (v1.0) ABCM Plugin for FrameMaker®

50 External Calls to ABCM

NOTE: Once a parameter is set, it remains set for the duration of the
session unless changed.

Returns

SetScheme
Sets the active coloring, filter, or validation scheme.

Syntax
F_ApiCallClient("ABCM",

 "SetScheme---SchemeType---Category---Scheme");

Val_Rule1Active

Val_Rule2Active

Val_Rule3Active

Val_Rule4Active

Specifies whether the
respective validation rule is
active, normally set in the
Preferences dialog box. See
Preferences on page 2-7.

Boolean true/false. See
Specifying Boolean
arguments on page 5-41

Val_ApplyStrikethrough Specifies whether validation
should apply strikethrough
text, normally set in the
Preferences dialog box. See
Preferences on page 2-7.

Boolean true/false. See
Specifying Boolean
arguments on page 5-41

Parameter Description Valid values

Value Meaning

0 Communication with ABCM appears to have failed. Use Hello to test
connectivity.

1 Parameter set successfully.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

109 Unrecognized parameter.

110 Invalid value.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 51

where:

Usage description

SetActiveScheme sets the active scheme prior to a coloring, filtering, or validation
action. It reads the data from your local copy of the main settings file. Once a scheme is
set, it remains set until you change it.

Returns

ValidateElement
Validates the specified element against the active validation scheme and returns the
first rule violated, if any.

Syntax
F_ApiCallClient("ABCM", "ValidateElement---Document---ElemId");

SchemeType Scheme type, one of:
• F or Filter
• C or Coloring
• V or Validation

Category Case-sensitive scheme category.

Scheme Case-sensitive scheme name.

Value Meaning

0 Communication with ABCM appears to have failed. Use Hello to test
connectivity.

1 Parameter set successfully.

101 Unrecognized command. Check the syntax of the command itself.

102 Bad scheme type argument.

103 Incorrect number of arguments sent with command.

106 Unrecognized category and/or scheme.

107 Main settings file critical error, possibly missing or corrupt.

User Guide (v1.0) ABCM Plugin for FrameMaker®

52 External Calls to ABCM

where:

Usage description

ValidateElement evaluates a single element against the active validation scheme
and returns an integer representing the first rule found that was violated, if any. It
operates using the currently-active validation rules and validation options, all of which
can be set with SetParm. It does not create any reports.

Note that this command only returns a single integer and therefore can only return a
single rule number. An element, however, can violate more than one rule at once. This
command will simply return the first rule violation it finds, but you should be aware that
more violations may exist.

Returns

Detailed example—Calling ABCM (FDK)
The following example contains a C language code sample for use with the FDK. It is a
self-contained function that has been designed for and tested against the
External_Calls_Sample.fm file, found in your ABCM_SampleFiles subfolder.
For proper operation, this function relies on External_Calls_Sample.fm to be in its

Document Document that contains the element to be checked. For
more information on specifying this parameter, see
Specifying document and book arguments on page 5-41.

ElemId The F_ObjHandleT object ID of the element to check.

Value Meaning

0 Element’s attributes are valid.

1 - 4 Number of the validation rule that the element violated. See Attribute validation
on page 3-16.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad document argument. See Specifying document and book arguments on
page 5-41.

105 Bad element ID.

106 Bad category and/or scheme name. This error will occur if an active filtering
scheme is not set before the command is run.

119 An unknown error occurred during validation.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 53

original state, and the external call schemes to be unaltered in the Samples category.
This category is found in the default main settings file provided with the ABCM
installation.

With External_Calls_Sample.fm active, this function does the following:
1. Sets the active coloring scheme
2. Colors the original document
3. Sets up and performs a duplicate-file filter on the original document
4. Colors the new, filtered duplicate
5. Closes the duplicate
6. Sets up and runs a source-file filter on the original document
7. Restores the original and removes coloring
8. Retrieves the ID of the first Section element, colors it, then filter checks it
9. Retrieves the ID of the second Section element, colors it, then filter checks it

NOTE: You can also find an electronic copy of this function in the
External_Calls_Sample.c file which installs into the
ABCM_SampleFiles subfolder, under WestStreet.

VoidT ABCM_Sample()
{
 F_ObjHandleT docId,
 docId2,
 flowId,
 elemId;
 UCharT msg[512];

 IntT returnVal;

 UIntT i;

 //Let's store the ID of the active document, which MUST BE the
 //External_Calls_Sample.fm file for this whole function to work
 docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);
 if(!docId) return;

 //Message
 F_ApiAlert("Preparing to color. Click OK to set the active scheme...",
 FF_ALERT_CONTINUE_WARN);

 //Set the active coloring scheme. Let's do a bogus scheme first, just as
 //an example of a call failure
 returnVal = F_ApiCallClient("ABCM", "SetScheme---C---BogusCategory---BogusScheme");

 //send a message about the failure. Should indicate a return value of 106
 F_Sprintf(msg, "The command to set the scheme failed, because the category\
 and scheme name were bogus. The call returned the following integer: %d\n\n\

User Guide (v1.0) ABCM Plugin for FrameMaker®

54 External Calls to ABCM

 Click OK to try again.",
 returnVal);

 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 //Set the active coloring scheme for real this time
 returnVal = F_ApiCallClient("ABCM", "SetScheme---C---Samples---External_Call_Sample");

 //Evaluate the response. We're going to back out if something went wrong.
 if(returnVal == True)
 F_ApiAlert("The scheme was set successfully. Click OK to launch the coloring.",
 FF_ALERT_CONTINUE_WARN);

 else
 {
 F_Sprintf(msg, "The command failed, returning the following integer: %d\n\n\
 Your main settings do not include the factory samples necessary for this test.\
 The test will abort.", returnVal);

 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 return;
 }

 //Launch the coloring.
 returnVal = F_ApiCallClient("ABCM", "ColorFile---External_Calls_Sample.fm---False");

 //Let's make sure it worked, before continuing. If you forgot to open the file
 //beforehand, this would have caused it to fail.
 if(returnVal == True)
 F_ApiAlert("The file was successfully colored. Click OK to launch the filtering.",
 FF_ALERT_CONTINUE_WARN);

 else
 {
 F_Sprintf(msg, "The coloring failed. Did you forget to open the file?",
 returnVal);

 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 return;
 }

 //Set the filtering scheme
 returnVal = F_ApiCallClient("ABCM", "SetScheme---F---Samples---External_Call_Sample");

 //Set the filter type to duplicate file
 returnVal = F_ApiCallClient("ABCM", "SetParm---Filter_Type---D");

 //Set the "save files first" option to off
 returnVal = F_ApiCallClient("ABCM", "SetParm---Filter_SaveFirst---0");

 //Filter the document
 returnVal = F_ApiCallClient("ABCM", "FilterFile---External_Calls_Sample.fm---False");

 //If it filtered successfully, we should have received an object ID back of the
 //filtered duplicate. Just as a sample of what we can do with it, let's color the
 //filtered duplicate now.

ABCM Plugin for FrameMaker® User Guide (v1.0)

External Calls to ABCM 55

 //Let's save the document ID first.
 if(returnVal > 1000)
 {
 docId2 = (F_ObjHandleT)returnVal;
 F_ApiAlert("The file was successfully filtered. Click OK to color the new file.",
 FF_ALERT_CONTINUE_WARN);
 }
 else
 {
 F_ApiAlert("Something went wrong. Aborting the test.", FF_ALERT_CONTINUE_WARN);
 return;
 }

 F_Sprintf(msg, "ColorFile---%d---False", docId2);
 returnVal = F_ApiCallClient("ABCM", msg);

 //Get ready to close the filtered duplicate
 F_ApiAlert("The duplicate file was colored. Click OK to close it.",
 FF_ALERT_CONTINUE_WARN);

 F_ApiClose(docId2, FF_CLOSE_MODIFIED);

 //Now let's do a source-file filter

 F_ApiAlert("The duplicate file was closed. Now click OK to perform a\
 source-file filter on the original document.", FF_ALERT_CONTINUE_WARN);

 //Set the filter type to source file
 returnVal = F_ApiCallClient("ABCM", "SetParm---Filter_Type---S");

 //Filter the document
 returnVal = F_ApiCallClient("ABCM", "FilterFile---External_Calls_Sample.fm---False");

 //Report
 F_ApiAlert("The file was filtered. Click OK to restore it.",
 FF_ALERT_CONTINUE_WARN);

 //Restore the filtered file.
 returnVal = F_ApiCallClient("ABCM", "RestoreFile---External_Calls_Sample.fm");

 //and let's remove the coloring
 F_ApiSimpleImportElementDefs(docId, docId,
 FF_IED_REMOVE_OVERRIDES | FF_IED_REMOVE_BOOK_INFO);

 //Just for kicks, let's do some element-level functions.

 //Let's get the ID of the first Section element,
 //the one tagged for Product A.
 flowId = F_ApiGetId(FV_SessionId, docId, FP_MainFlowInDoc);
 elemId = F_ApiGetId(docId, flowId, FP_HighestLevelElement);
 elemId = F_ApiGetId(docId, elemId, FP_FirstChildElement);
 for(i = 0; i < 5; i++)
 elemId = F_ApiGetId(docId, elemId, FP_NextSiblingElement);

 //Prompt
 F_ApiAlert("The code has retrieved the ID of the first Section element.\
 Click OK to color it.", FF_ALERT_CONTINUE_WARN);

User Guide (v1.0) ABCM Plugin for FrameMaker®

56 External Calls to ABCM

 //Color the first Section element
 F_Sprintf(msg, "ColorElement---%d---%d---True---False", docId, elemId);
 returnVal = F_ApiCallClient("ABCM", msg);

 //Prompt
 F_ApiAlert("The element has been colored. Click OK to filter check it.",
 FF_ALERT_CONTINUE_WARN);

 //Filter-check the first Section element. It should return a value of
 //zero, meaning that the element should not be filtered out. In other
 //words, the active coloring scheme allows it to stay.
 F_Sprintf(msg, "FilterCheckElement---%d---%d", docId, elemId);
 returnVal = F_ApiCallClient("ABCM", msg);

 F_Sprintf(msg, "The filter check returned: %d.\n\n\
0 = Keep\n1 = Filter out", returnVal);
 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 //Do the same thing for the second Section element. This one should
 //return a flag to filter it out, like it was filtered out when we
 //ran the full document filter earlier.

 //Get the ID of the second Section element
 elemId = F_ApiGetId(docId, elemId, FP_NextSiblingElement);

 //Prompt
 F_ApiAlert("The code has retrieved the ID of the second Section element.\
 Click OK to color it.", FF_ALERT_CONTINUE_WARN);

 //Color the second Section element
 F_Sprintf(msg, "ColorElement---%d---%d---True---False", docId, elemId);
 returnVal = F_ApiCallClient("ABCM", msg);

 //Prompt
 F_ApiAlert("The element has been colored. Click OK to filter check it.",
 FF_ALERT_CONTINUE_WARN);

 //Filter-check the second Section element. It should return a value of
 //one, meaning that the element should be filtered out. In other words,
 //it is content to be hidden.
 F_Sprintf(msg, "FilterCheckElement---%d---%d", docId, elemId);
 returnVal = F_ApiCallClient("ABCM", msg);

 F_Sprintf(msg, "The filter check returned: %d.\n\n\
0 = Keep\n1 = Filter out", returnVal);
 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 F_ApiAlert("All done!", FF_ALERT_CONTINUE_WARN);
}

	Home
	Contents
	1: Introduction
	Advantages over native conditional text
	What the plugin does
	Requirements to use the ABCM plugin
	About the name
	Trademarks and licensing information

	2: Getting Started
	Definitions of terms
	Important note on native conditional text
	Specifying attributes
	Conditionalizing whole chapters
	Preferences
	About the main settings file
	About scheme categories

	3: Filtering, Coloring, and Validating
	Filtering
	Launching a filter
	Filter types - Source versus duplicate file
	How filtering works
	Restoring a document or book
	Conditionalizing (and filtering out) entire files

	Coloring
	Launching a coloring action
	Removing coloring

	Attribute validation
	Automatic validation
	Validation rule #1 - Simple syntax
	Validation rule #2 - Ancestor element lacking subordinate condition
	Rule #3 - Unspecified descendants
	Rule #4 - Empty attribute not allowed

	4: Scheme Setup And Other Main Settings
	General information about schemes and categories
	General scheme editing procedures

	Coloring schemes
	Basic coloring scheme behavior
	Coloring scheme details
	Attribute/value matching criteria
	Coloring rule order
	<no value> and <any value> in a coloring scheme
	Where the colors come from
	Other coloring scheme options and features

	Filter schemes
	General filter scheme matching behavior
	<no value> and <any value> in filter schemes
	Filtering out elements by type, using unique attribute names

	Validation schemes
	Advanced scheme options
	Considering EDD-applied defaults
	Ignoring case-sensitivity
	Attribute values delimited by whitespace (Tokenized strings)
	Processing all flows

	Master attribute library
	Master colors list
	Migrating Sourcerer settings

	5: External Calls to ABCM
	How to send an external call to ABCM
	General information on external calls
	Specifying document and book arguments
	Specifying Boolean arguments

	Call reference
	ColorElement
	Syntax
	Usage description
	Returns

	ColorFile
	Syntax
	Usage description
	Returns

	Hello
	Syntax
	Returns

	FilterCheckElement
	Syntax
	Usage description
	Returns

	FilterFile
	Syntax
	Usage description
	Returns

	RestoreFile
	Syntax
	Usage description
	Returns

	SetParm
	Syntax
	Usage description
	Returns

	SetScheme
	Syntax
	Usage description
	Returns

	ValidateElement
	Syntax
	Usage description
	Returns

	Detailed example-Calling ABCM (FDK)

