

AXCM Plugin for FrameMaker®

v3.30 User Guide

AXCM Plugin for FrameMaker® User Guide (v3.30)

Contents iii

Introduction

Advantages over native conditional text . 1

What the plugin does . 2

Requirements to use the AXCM plugin . 3

Important notes on later versions of FrameMaker . 3

About the name. 3

Translation of the AXCM interface . 4

Selecting a language .4

Language configuration .4

Additional language utilities .5

Trademarks and licensing information. 6

Getting Started

Definitions of terms . 7

Important note on native conditional text . 7

Specifying attributes . 8

Conditionalizing whole chapters. 9

Local settings . 9

About the main settings file. 9

Main settings file location .10

About the main settings document structure .11

Contents

User Guide (v3.30) AXCM Plugin for FrameMaker®

iv Contents

Book processing limitations . 11

About “configuration files” . 12

Where settings files are stored . 13

About scheme categories . 13

Filtering, Coloring, and Validating

Filtering . 15

Launching a filter .16

Filter types - Source versus duplicate file .17

How filtering works .18

Restoring a document or book .19

Conditionalizing (and filtering out) entire files .19

Creating and editing schemes from the filter dialog .19

Coloring. 21

Launching a coloring action .21

Removing coloring .22

Attribute validation. 22
Automatic validation .23

Validation rule #1 - Simple syntax .23

Validation rule #2 - Ancestor element lacking subordinate condition23

Rule #3 - Unspecified descendants .25

Rule #4 - Empty attribute not allowed .25

Scheme Setup And Other Main Settings

General information about schemes and categories 27

About “classic” vs. XPath schemes .28

Important notes about XPath-based schemes .29

General scheme editing procedures - “Classic” schemes .30

General scheme editing procedures - XPath-based schemes30

About the XPath expression tester .31

Coloring schemes. 31

Basic coloring scheme behavior .32

Where the colors come from .33

Coloring scheme details - “Classic” schemes .33

Attribute/value matching criteria . 34

Coloring rule order . 35

<no value> and <any value> in a coloring scheme . 36

Other coloring scheme options and features . 37

AXCM Plugin for FrameMaker® User Guide (v3.30)

Contents v

Coloring scheme details - XPath-based schemes .38

Matching a single, basic condition . 38

Matching and differentiating two basic conditions . 39

Coloring everything except a certain condition . 39

Filter schemes. 40

General filter scheme matching behavior - “Classic” schemes42

General filter scheme matching behavior - XPath-based schemes 44

<no value> and <any value> in “classic” schemes .45

Filtering out elements by type, using unique attribute names46

Validation schemes . 48

Advanced scheme options . 48

Considering EDD-applied defaults .49

Ignoring case-sensitivity .49

Attribute values delimited by whitespace (Tokenized strings) 50

Processing all flows .51

Master attribute library. 51

Master colors list . 52

Migrating Sourcerer settings. 52

 External Calls to AXCM

How to send an external call to AXCM . 53

General information on external calls . 54
Specifying document and book arguments .55

Specifying Boolean arguments .55

Call reference . 55

ChangeCallDelimiter .55

Syntax . 56

Returns . 56

ChangeCallDelimiter syntax example . 56

ColorElement .56

Syntax . 56

Usage description . 57

Returns . 57

ColorFile .57

Syntax . 58

Usage description . 58

Returns . 58

FilterCheckElement .59

Syntax . 59

User Guide (v3.30) AXCM Plugin for FrameMaker®

vi Contents

Usage description . 59

Returns . 59

FilterFile .60

Syntax . 60

Usage description . 60

Returns . 61

GetParm .62

Syntax . 62

Usage description . 62

Returns . 63

Hello .63

Syntax . 63

Returns . 63

ReadLocalSettings .63

Syntax . 64

Returns . 64

RestoreFile .64

Syntax . 64

Usage description . 65

Returns . 65

SetParm .65

Syntax . 65

Usage description . 65

Returns . 71

SetScheme .71

Syntax . 71

Usage description . 72

Returns . 72

ValidateElement .73

Syntax . 73

Usage description . 73

Returns . 73

Detailed example—Calling AXCM (FDK) . 74

AXCM Plugin for FrameMaker® User Guide (v3.30)

Introduction 1

1: Introduction

AXCM is a plugin for the structured environment of Adobe FrameMaker that allows you
to use attributes, values, and element markup to indicate and manage conditional
content. The functional concept is similar to native conditional text, except that
conditions are specified and managed with structural metadata rather than traditional
condition tags.

Structured FrameMaker has always allowed conditional metadata to be specified with
structural attributes and element markup, but it has historically lacked adequate native
features to manage those conditions. This plugin fills that deficit and provides a
comprehensive suite of management functions, such as conditional coloring and the
production of conditional output.

Advantages over native conditional text

The use of structural metadata and the AXCM plugin for conditional text brings a host
of advantages over native condition tags, including:

• Easier management of multiple, overlapping conditions - Structural markup
provides a multi-dimensional matrix for specifying overlapping conditions, and the
plugin allows those conditions to be managed much more easily and independently.
If you have used native conditional text in the past, you are probably aware of the
difficulties that immediately surface once you attempt to overlap multiple conditions,
many of which are overcome by the AXCM methodology.

With this plugin, each condition is its own entity that can be managed without
conflict with others. You can color any condition or combination of conditions as you
see fit, and completely ignore any conditions that you are not concerned with at the
present. Similarly, you only deal with the conditions of interest while producing (or

User Guide (v3.30) AXCM Plugin for FrameMaker®

2 Introduction

filtering) output. No more sifting through long lists of conditions trying to decide what
to hide versus show.

• Clear and concise application of conditions - When your conditions are
assigned as attribute values and/or element markup, you know exactly what
content is conditional, every time. You never again have to be concerned with
issues like a missed character or paragraph mark during condition assignment.

• “Automatic” conditions - Because the mere presence of an attribute or an
element tag can represent a condition, a particular element can be designated as
always conditional. A common application of this behavior is through the use of
designated elements for in-text authoring comments. If you use a unique element
tag or place a unique attribute on such an element, you can have the filtering
process automatically remove every single instance of the element, ensuring that
every one is removed, every time. Following this example, you would never again
need to worry whether you conditionalized all of your personal comments.

• “Scheme” usage for controlling coloring and filtering actions - The plugin
operates on the concept of “schemes” to control filtering and coloring activities. A
scheme allows you to “program” a certain coloring or filtering pattern into your
settings one time, then simply run that scheme afterwards. The repetitive decision-
making process of the Show/Hide dialog box becomes a thing of the past.

• Preservation of conditions in markup - If you import/export XML or SGML and
your conditions are specified as structural markup, your conditions will naturally
survive the trip in their native form. Furthermore, they will be readily available for
any external post-process to recognize and manage as necessary.

• Whole-chapter conditionalization - The functional model of the plugin allows you
to conditionalize whole chapters of a book.

• Comprehensive support for logical operators - Especially with the newer XPath-
based schemes, AXCM can accommodate virtually any permutation of AND, OR,
NOT, and other common logical operators to device filtering and coloring criteria.

What the plugin does

The plugin provides three main functions:

• Coloring - Using schemes based on attribute values and/or structural markup, the
plugin can color your conditional content in a highly-flexible and customizable
fashion. The concept is similar to native condition tag indicators, but the
functionality is much more advanced. For more information, see Coloring on
page 3-21.

• Filtering - Filtering is the process of producing conditional output, similar in concept
to using the FrameMaker Show/Hide dialog box. It is functionally different than
native conditional text, though, being more flexible and easier to use. For more
information, see Filtering on page 3-15.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Introduction 3

• Validation - With conditions specified attributes, there are certain rules which can
be applied to help maintain the accuracy and integrity of those conditions.
Validation uses these rules to check your document setup and reports any
violations it finds. It has no counterpart in native conditional text. For more
information, see Attribute validation on page 3-22.

NOTE: Validation schemes are only supported in the “classic” scheme format.

Requirements to use the AXCM plugin
• Structured FrameMaker 8 - 10, with any EDD. You may use any markup you want

for conditions. For important information about newer versions FrameMaker, see
Important notes on later versions of FrameMaker on page 1-3.

• Microsoft Windows, as supported by your version of FrameMaker.

Important notes on later versions of FrameMaker

FrameMaker 9 and later have introduced some significant changes to the interface
which have impacted the functionality of plugin software such as AXCM. While we
believe that the software is generally stable and adheres to its core functionality, some
anomalies may be present, especially as related to dialog boxes and other interface
features. We will continue to monitor the software and make improvements as feasible
and warranted. If you discover any critical problems, such as crashes and/or deviations
from core functionality, please contact us right away and we will investigate it.

The following notes are applicable to FrameMaker 9 and later:

• Book-wide functions such as book filters do not support the new group and folder
features within FrameMaker books. We may implement support in the future, but
this is not guaranteed, as the complexity of nested book structures may be
generally incompatible with AXCM operation.

• For some functions such as coloring, performance may slower in newer versions of
FrameMaker. We will continue to look at this issue but may be limited by the speed
of FrameMaker itself. We have observed that XPath-based scheme activities are
faster than classic scheme activities.

About the name

AXCM is an acronym for Attribute and XPath-Based Condition Management. It used to
be “ABCM,” before the plugin included XPath functionality. We wish it had a more
interesting name, but have failed to conjure up anything better.

User Guide (v3.30) AXCM Plugin for FrameMaker®

4 Introduction

Translation of the AXCM interface

AXCM supports customizable translations of its menus, dialog boxes, and messaging,
based on “lookup” files that you can create and edit. When a string is required for a
dialog box control or a message, it looks for that string in one of these lookup files
according to the currently active language. Note the following:

• West Street does not claim support for any foreign language, only that you may add
your own translations as desired. You can use this feature to implement a real
language or simply rename labels, etc. using text that you like better. The plugin
installs with a sample “Bogusian” language intended to serve as a model for setting
up another language.

• West Street does not guarantee that any particular feature will work correctly once
you implement a new language. We intend for it to work and will address any
problems you find; however, you should be aware that it is impossible to fully test a
feature with a virtually infinite number of variations/permutations.

• West Street believes that translation features cover about 95% of the strings that
are associated with active features. This means that a small percentage of strings
remain fixed in English, especially as related to short prompts and other
messaging. Additionally, note that none of the features scheduled for deprecation
support translatable strings, such as the transformation features.

• West Street believes that the unicode range of character sets is fully supported for
replacement text. The Bogusian sample provides an example of this.

• West Street believes that this feature is generally applicable for specialized use by
select users only. For that reason, this documentation is brief. If you need
assistance with translation features, please contact us and we will be happy to help.

Selecting a language

To select a language, select AXCM > Language > Set Language. Any languages that
are properly configured will appear in the list (see Language configuration on
page 1-4). A language change takes effect immediately.

You can also set a default language upon startup in your preferences file (see Local
settings on page 2-9). This setting provides an option to default to the current language
in use by the FrameMaker interface. Again, be aware that any setting in this file must
represent a properly-configured language

Language configuration

For any new language, the plugin requires two lookup files, both of which much reside
together in the plugin installation folder or the settings folder. These files are named as
follows, where language is the case-insensitive language name that will appear in the
Set Language dialog box:

AXCM Plugin for FrameMaker® User Guide (v3.30)

Introduction 5

• AXCM_Strings_Dialogs_language.fm - The lookup file for strings that appear
in the menus and major dialog boxes, such as the Node Wizard. This file consists of
a set of tables with the English text in the left column and the replacement text in
the right. For each dialog box string, the plugin effectively starts with the English
text and attempts to look up the translation based on the contents of this file.

Note that for these types of strings, the plugin is starting with “built-in” English
versions. Therefore, when set to English, the plugin does not use this file. That is, a
file named AXCM_Strings_Dialogs_English.fm will never be used. However,
it is always used for any other language.

• AXCM_Strings_General_language.fm - The lookup file for all other strings
that strings that appear in error reports, short interactive prompts, and other places.
The strings in this file are looked up based on an ID string, rather than the full
English version. For this type of file, a AXCM_Strings_General_English.fm
file does exist and is the source of all English strings that relate to prompts and
messaging.

The two different files with their differing methodologies are required to accommodate
how FrameMaker handles strings with respect to dialog boxes versus other functional
areas, when programming to its API. Further explanation on this subject is beyond the
scope of this document.

Once both of these files are properly-named and reside in the installation or settings
folder, the respective language name automatically appears in the Set Language
dialog box. Note the following:

• For new languages, the best approach is to copy the “Bogusian” examples and use
them as templates. Each file contains additional instructions within.

• If you alter the file structure or otherwise make changes beyond that described in
this document or within the files themselves, the results could be completely
unpredictable. At worst, you may cause FrameMaker to crash.

• The strings files can also be stored in MIF format.

Additional language utilities

The plugin includes the following additional utilities in the Language menu that may be
used rarely, if at all:

• Create Dialog Strings File - Creates a new dialog and menu strings file with
English text only, ready for translation to a new language.

• Update Dialog Strings File - Attempts to update an active dialog and menu strings
with the latest English strings used by the plugin. You must have a valid strings file
currently open. Any new English strings are added as new rows to the respective
tables. Any strings in the file that appear to be unused are colored red.

Note the following:

User Guide (v3.30) AXCM Plugin for FrameMaker®

6 Introduction

• These features were originally intended as a convenience for making updates, but
may be deprecated. Again, it is recommended that you use the Bogusian files as
templates instead.

• These features apply to the dialog strings file only. For the general strings file, you
must always use an existing file as a template and all maintenance is done
manually.

Trademarks and licensing information

This software is provided free and carries a license for unlimited use by anyone in any
corporate, business, personal, or other setting. You are permitted to use it, not use it,
copy it, reverse engineer it, bundle it with your own commercial solutions, extract any
intellectual property for personal gain, or anything else that amuses you or makes you
money in an otherwise legal fashion. The only thing you cannot do is claim that you
designed and/or built it.

If you choose to use it, be aware that YOU ARE FULLY RESPONSIBLE for any actions
or consequences that result from its use, including hardware damage and data loss.
West Street Consulting and associates will not be held responsible for any damage
caused by its use. USE IT AT YOUR OWN RISK!

If you choose to bundle it with your own commercial or freely available solutions, West
Street reserves the right to expect you to provide any technical support required by end
users. Furthermore, if you distribute it to other users, you are expected to make them
aware of these disclaimers.

Adobe and FrameMaker are registered trademarks of Adobe Systems, Inc. Quadralay,
ePublisher, and WebWorks are registered trademarks of Quadralay Corporation.
FrameScript is a registered trademark of Finite Matters, Ltd. FrameAC is a product of
Mekon Ltd. All other marks are trademarks of their respective owners. West Street
Consulting is not affiliated with Adobe Systems and this software is in no way
developed, endorsed, or approved by Adobe.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Getting Started 7

2: Getting Started

This chapter contains information about the basic concepts involved with the plugin.

Definitions of terms

Within this document, note the following definitions:

• Native conditional text or conditional text - Refers to the built-in conditional text
feature that comes with FrameMaker, with the standard condition tags and
show/hide behavior. While these terms can be accurately applied to elements with
conditional attribute values as processed by this plugin, they are reserved for the
native feature for clarity.

• Attributes and Values - Refers specifically to the attributes and values found in
structural markup. With regards to AXCM functionality, attribute values are one
means of conditional tagging to replace the condition tags used with native
conditional text. With XPath-based schemes, element tags and content are also
available for representing conditional content.

Important note on native conditional text

This software is intended as a replacement for native FrameMaker conditional text,
leveraging the power of structural markup to overcome the many limitations associated
with the native feature. While the software does not prevent you from using native
conditional text at the same time, it is highly recommended that you do not. The usage
of this software to manage conditional information does not mix well at all with the
usage of native conditional text. In any given document set, you should use one or the

User Guide (v3.30) AXCM Plugin for FrameMaker®

8 Getting Started

other exclusively. Using AXCM in conjunction with native conditional text will likely
produce unexpected and disappointing results.

Specifying attributes

For the purposes of this plugin, any attribute and value can represent a condition. For
example, the following Section element shows a potential “ProductA” condition
designated for the product attribute:

Or, the following figure shows a Section element potentially conditionalized for two
different products:

You may use multiple attributes and values as needed to designate conditions,
overlapping as necessary, such as:

In short, you may use any attributes and values you wish, provided that you use them
consistently and build your scheme logic around them.

NOTE: Using a Strings-type attribute in an EDD, it is convenient to add
multiple values to a single attribute in the form of a list. However,
AXCM also supports tokenized strings of values, typically found in
XML markup. For XPath-based schemes, the types of expressions

AXCM Plugin for FrameMaker® User Guide (v3.30)

Getting Started 9

used determine whether tokenized values are recognized. For
“classic” schemes, the recognition of this construct is an individual
scheme option. For more information, see Attribute values
delimited by whitespace (Tokenized strings) on page 4-50.

Figure 2-1 Multiple values as a tokenized string

Conditionalizing whole chapters

One of the key benefits to using AXCM is the ability to conditionalize entire chapters of
books. For more information, see Conditionalizing (and filtering out) entire files on
page 3-19.

Local settings

AXCM provides a number of customizable settings in a simple text file that can be
opened by selecting AXCM > Open Local Settings File. When selecting this
command, the plugin attempts to open the file in Notepad. If the file fails to open, you
may have Notepad installed in an unusual location, in which case there is a setting in
the settings file that you can configure to point to your Notepad.exe file. If you need
help with getting this menu command to work, please contact West Street.

At any time, you can select AXCM > Read Local Settings From Settings File to read
the settings into memory. The file does not need to be currently open. Note that
Notepad operations such as saving and closing the settings file do not initiate a settings
read. To read settings, you must select that command.

The descriptions of all settings are contained within the file itself. You should take some
time to review the file in its entirety to ensure that you have AXCM configured for
optimal behavior with respect to your personal workflow.

About the main settings file

The main settings file is the home for scheme and attribute library data. Whenever you
work in a scheme editor, all the data you see is coming from the main settings file, and

User Guide (v3.30) AXCM Plugin for FrameMaker®

10 Getting Started

likewise all modifications are stored therein. Whenever you specify or change a
scheme, all scheme parameters come from this file.

Note that scheme data can also be stored in “configuration files.” For more information,
see About “configuration files” on page 2-12.

Main settings file location

The plugin always keeps a local copy of the main settings file to retrieve scheme data
whenever necessary. If you want, you can use the local file as the only copy, managing
all your data locally. In this scenario, the scheme data you use is private to your
installation, and the only means of sharing scheme data with other users is to pass a
copy of the file around. When you edit schemes, you are editing data in the local copy
only. For more information on where the local copy is stored, see Where settings files
are stored on page 2-13.

Alternatively, you can place a “master copy” of this file anywhere on your computer or
some other networked computer, then point any number of individual users to that
master file. In this scenario, FrameMaker will retrieve a copy of the master file upon
each startup and store it locally, after which it operates normally with the local copy.
With this type of enterprise configuration, you can maintain a central library of scheme
data and ensure that all applicable users are using the same scheme parameters.

NOTE: A main settings file can reside in a read-only location. For any user
that does not have write access to the location, scheme data will
be viewable, but scheme editing tools will not allow the user to
commit changes. In an enterprise settings scenario, this may be
one method to limit who can alter scheme data.

The location of your “master copy” is specified in your local settings file. By default, the
location points to the local copy, which normally at the following path (or similar):

C:\Documents and Settings\{user_name}\Application
Data\Adobe\FrameMaker\10\WestStreet\AXCM\AXCM_MainSettings_LocalCop
y.fm

With your local settings pointed to this file, you will be working in “local mode” only. If
you want to engage the “enterprise” feature, you need only to move a copy of that file to
some master location, then edit your local settings (or use AXCM > Main Settings
Configuration > Set Main Settings File Location) to point to the master copy. Once
you point to a different file, the plugin will go to that location automatically upon startup,
retrieve a copy, and overwrite the local version. The local copy will remain current with
the master file and a group of users can remain synchronized. For more information on
local settings, see Local settings on page 2-9.

Whenever you edit schemes, you are editing the file that your local settings point to. If
your settings point to the local copy, your edits will appear on your local installation only.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Getting Started 11

If your settings point to some master copy, your edits will appear there, and your local
copy will be refreshed once you are complete. If you edit some master copy that other
users also point to, they will see your changes upon their next startup of FrameMaker.
Note the following important items:

• If your main settings file resides anywhere that you do not have administrative write
privileges, edit actions through AXCM will fail. Related to this subject, you should
review Where settings files are stored on page 2-13.

• If you point to a file on an enterprise location but the software is unable to find it, the
most recent local copy is used instead. In this manner, the software will remain
functional in the event of network problems that are blocking access to your master
copy.

About the main settings document structure

A main settings file is a structured FrameMaker document itself. It may have any name,
but it must use the EDD designed for it. If you plan to place a master version
somewhere else, you should simply copy and paste the local copy that installs with the
software, then point your local settings to the new location.

You can use the file in binary FrameMaker, MIF, or XML format. For XML, the file will
functionally roundtrip using the default structure application, but formatting will be lost.
If you want to roundtrip the file without losing any of the formatting amenities, you can
build a very simple structure application using a factory version of the file as the
template. No custom API client or read/write rules are required. If you need help
roundtripping the file, please contact West Street.

Because it is a normal structured document, a main settings file can be edited manually
or by some external process other than FrameMaker. If you choose to do this, you
should exercise extreme caution and be sure to maintain the functional structure that
AXCM is expecting. An improperly structured file will at best cause AXCM to
malfunction and at worst cause FrameMaker to crash. Note that from a functional
perspective, AXCM cares nothing about the formatting in the file, only the markup and
the data.

Book processing limitations

AXCM supports the coloring, filtering, and validation of books that contain folders and
groups, new features added in FrameMaker 9. However, it does not support book files
nested within book files. An attempt to run processing on such a book will yield
unpredictable results at best.

User Guide (v3.30) AXCM Plugin for FrameMaker®

12 Getting Started

About “configuration files”

As an alternative to the use of the main settings file, scheme data can also be stored in
tabular format in a FrameMaker document. When stored in this manner, that file is
known as a “configuration file” for the purposes of AXCM and its documentation.

A configuration file can be any format that is capable of rendering a table in
FrameMaker, including binary FrameMaker, MIF, and XML. It can be structured or
unstructured, using any template. When reading data from a configuration file table, no
element or formatting markup is considered. Only the text is read.

A scheme table does need to follow a strict syntax and general layout. For more
explanation and examples, see the samples contained in
AXCM_Sample_Config_File.fm which is provided with the AXCM installation.

To use a scheme from a configuration file for coloring, filtering, or validation, you must
select or browse to the file using the special commands found in the Category
dropdown lists in the respective dialog boxes. Once a configuration file has been
selected, the Scheme list shows all the schemes that could be found in the file, similar
to the usage of a normal category from the main settings document.

The additional items are relevant to configuration file usage:

• Configuration files must be edited manually. They have no integration with the
AXCM scheme editors. All scheme editor activity works with traditional main
settings files only.

• AXCM identifies a table as a scheme table based on the title alone. Scheme tables
can exist anywhere in the document, including master and reference pages. The
order in which they are identified may not follow normal document order.

• The general setup of scheme tables follows the overall appearance of schemes
within the scheme editors. Therefore, a familiarity with traditional scheme usage is
important for the successful use of configuration files.

• An incorrectly-configured scheme table can cause any nature of unpredictable
and/or undesirable behavior, sometimes without any warning. Therefore, you
should use them with care and thoroughly test them before putting them into
production use.

• It is expected that this feature will be used by a select few users in specialized
environments only. Therefore, this documentation is intentionally kept brief. If you
have additional questions or need more help, please contact West Street.

AXCM includes a simple utility for validating the overall setup of a scheme table,
invoked by selecting AXCM > Check Tabular Scheme Data. Before selecting this
command, you should place the insertion point somewhere within the table you want to
check. The utility validates the following basic rules:

AXCM Plugin for FrameMaker® User Guide (v3.30)

Getting Started 13

• Two schemes of a particular type within the same file cannot have identical names.

• Filter and validation schemes should have at least one Attribute or Expressions
row.

• Filter and validation schemes should not have both Attribute and Expressions
rows.

• Filter and validation schemes should not have multiple and Expressions rows.

• Filter and validation schemes should not have Rule rows.

• Coloring schemes should have at least one Rule row.

• Each Rule row in a coloring scheme should have a color specified.

• Coloring schemes should not have Attribute or Expressions rows.

• Any cell meant to contain one or more attributes, values, or XPath expressions
should not be empty.

• All XPath expressions (as applicable) must be parsable.

Where settings files are stored

By default, all settings and support files are stored in the Windows “Documents and
Settings” area for the respective user, at a location similar to the following:

C:\Documents and Settings\{user_name}\Application
Data\Adobe\FrameMaker\9\WestStreet\AXCM

In the AXCM installation area, the AXCM.ini file provides the option to store all
settings in the AXCM installation area instead. This approach should work as long as
you have full administrative privileges to the installation area. However, it is
recommended that you preserve the default settings instead, which ensures proper
operation regardless of installation area privileges. It also allows the plugin to work in
collaborative server environments such as Citrix.

About scheme categories

The software uses three different types of schemes for processing, as applicable:

• Coloring

• Filtering

• Validation (“classic” schemes only)

To help with scheme management and organization, schemes are placed into
categories and you must select the appropriate category when setting or editing a
particular scheme. Each category can contain any number of coloring, filtering, and

User Guide (v3.30) AXCM Plugin for FrameMaker®

14 Getting Started

validation schemes, and the way in which you set up your categories is completely up
to you. This architecture is designed simply to allow the grouping of common schemes,
such that any given list does not get too long.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Filtering, Coloring, and Validating 15

3: Filtering, Coloring,
and Validating

This section of the document describes the three main processes that the AXCM
provides to manage your conditional content:

• Filtering - Filtering is the process by which you produce publishable output from
your composite, conditional source. It is analogous to the “Show/Hide” activity with
native conditional text. For more information, see Filtering on page 3-15.

• Coloring - Coloring is a means of indicating your conditional content with custom
colors, primarily as an authoring convenience to help you visually see your
conditions. This function is analogous to the “condition indicators” aspect of native
conditional text. For more information, see Coloring on page 3-21.

• Validation - Validation provides an automatic means of detecting common errors
with conditional attribute assignment. It is unique to markup-based conditions and
has no counterpart in native conditional text. For more information, see Attribute
validation on page 3-22.

You can have as many schemes as you want, and even share them at an enterprise
level. For more information, see About the main settings file on page 2-9.

Filtering

Filtering allows you to produce output from a composite, conditional source, often as
one of the final steps before publishing. It has some conceptual similarity to showing
and hiding native conditional text, but it is much more advanced and flexible.

The filtering logic is directed entirely by the parameters of your defined filter schemes.
That is, for any given document, all decisions about what content gets “shown” versus
what gets “hidden” are based on the instructions found in the scheme that you run. This

User Guide (v3.30) AXCM Plugin for FrameMaker®

16 Filtering, Coloring, and Validating

section does not cover this logic; rather, it describes the general aspects of filtering and
file handling. For details on how the logic of schemes work during the filtering process,
see Filter schemes on page 4-40.

Before attempting to filter content, you should read this section carefully. You should be
especially sure that you understand the difference between source and duplicate file
filtering, as described in Filter types - Source versus duplicate file on page 3-17.

Launching a filter

To launch a filtering action, bring the desired book or document to the front and select
AXCM > Filtering > Filter {doc type}. This function will produce the filter dialog box,
with the following options:

NOTE: If you intend to filter a whole book, be sure to bring the book
window to the front before launching the dialog box.

Scheme category and Filter
scheme

Sets the filter scheme you want to run. For more information
on scheme construction and behavior, see Filter schemes on
page 4-40.

Filtered book folder Sets the target folder where a duplicated, filtered book will be
placed. This option is only applicable to duplicate file book
filters. For more information, see Filter types - Source versus
duplicate file on page 3-17.

New and View/Edit Allows you to view and perhaps edit the setup of the selected
scheme, or create a custom “on-the-fly” scheme. For more
information, see Creating and editing schemes from the filter
dialog on page 3-19.

Filter type Filter type for the current filtering action. For more information,
see Filter types - Source versus duplicate file on page 3-17.

NOTE: You can set a default value for this option in your
local settings file. For more information, see Local
settings on page 2-9.

Remove coloring (refresh
EDD)

Removes all format overrides (such as AXCM-applied
coloring) by refreshing EDD format rules.

Save original files before
filtering

Causes the plugin to save all applicable files before launching
the filter, including the book file if you are performing a book
filter. This option is especially recommended for duplicate file
filters, because the filtering action will close your original files
during the process and any unsaved changes would be lost
otherwise.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Filtering, Coloring, and Validating 17

Filter types - Source versus duplicate file

AXCM provides two types of filtering which you should be sure to understand before
using the filter:

• “Duplicate file” filtering - With this type, your files to be filtered are duplicated,
then the content to be “hidden” is completely deleted from the duplicate. Your
source files are unaffected and the result is a filtered duplicate of the source file.
This form of filtering is very clean and is generally recommended for filtering
processes involved with pre-publication document preparation.

• “Source file” filtering - This type of filtering works directly on your source files and
uses native conditional text as the tool to hide the unwanted content. For all content
deemed to be hidden, it applies the condition defined in your local settings (see
Local settings on page 2-9) and then hides that condition after the filter. Your source
files are effectively filtered, but because the unwanted content was hidden with the
standard conditional text mechanism, no content is permanently deleted.

Source file filtering includes two variations:

– Restore from a previous filter first - Before the filter, AXCM shows all
conditions in the document and then removes them. This step effectively
removes any filtering that was applied by a previous source file filter. Note,
however, that it will also remove any conditional text in the document applied by
any other means.

– Do not restore - With this method, AXCM moves straight to the filter without
any restoration. This method allows you to run multiple filter schemes on a
single file in a layered fashion. Note that this method is generally reserved for
specialized use only and that most users should use the “restoration” method.

By default, the “no-restore” method shows all native condition tags in the
document before a filter, then hides the “hidden” condition after a filter. This
behavior can be changed with settings in your local settings file. In all cases, if
you are using XPath-based schemes and this filter method, you should make
sure that you understand the starting context of the document, as element
hierarchy and relationships can change when content is shown and hidden.

The decision of which filter type to use is purely based on workflow. For publishing,
especially books, the duplicate file method is generally preferred, because native
conditional text is known to cause crashes and other oddities while generating print or
PDF output. On the other hand, the source file filter might be more convenient on a

Delete empty folders and
groups after filtering

Causes the plugin to delete any empty folders and/or groups
in the filtered book file, after the filter. Note that:

• This option will delete all empty folders and groups
whether or not the filtering action deleted their contents or
they were empty from the start.

• You can configure a startup default for this setting in your
local settings (see Local settings on page 2-9).

User Guide (v3.30) AXCM Plugin for FrameMaker®

18 Filtering, Coloring, and Validating

single-document basis while authoring, such that you can get a quick view of what your
output will look like.

If you perform a duplicate filter on a single document, the plugin will open up an
unsaved duplicate and then filter it, leaving it open on the screen afterwards. If you
perform a duplicate file filter on a book, you must specify a target folder to receive the
duplicate book. AXCM cannot duplicate a book within the same folder as the original
book, because duplicate books use all the same filenames as the original book. The
only physical difference with the duplicate book is the missing content that was filtered
out, as applicable.

Using the duplicate file filter on a book provides a convenient means to move your
publishable output to some refreshable staging area for publication. For example, if you
use Quadralay software to generate help systems from your book, you can filter the
book into a separate project area, then run the help generation software on the filtered
duplicate. With this method, you never need to be concerned with the help generation
software manipulating your source files or attempting to manage conditions for you.

When you perform a duplicate file filter on a book, AXCM will adjust all cross-
references and file reference links automatically. For cross-references between chapter
files, the links will be adjusted to point between the respective chapter files of the new,
duplicated book. For cross-references outside the book, the plugin will leave them
alone and they will continue to point to the same, external source.

If you use the source file filter, you should be aware that the native conditional text is
used as a mechanism to hide content only. The native conditional text (i.e., the
“Hidden” condition) plays no part in the logic of determining what to show or hide. All
show/hide logic is driven by the respective filter scheme. Note the following important
items about source-file filtering:

• The filtering and restoration process will interfere with any native conditional text
assignment already in the document. Although you should not use native
conditional text in conjunction with AXCM, you should be especially sure not to run
a source file filter on a document that still contains any.

• The plugin provides an automatic means of restoring a document after a source file
filter. For more information, see Restoring a document or book on page 3-19.

How filtering works

When a structured flow is filtered, AXCM starts at the highest-level element and walks
through the entire structure tree in a logical fashion, doing one of the following for each
element:

• For “classic” schemes, checks whether the attribute setup qualifies the element for
preservation or deletion

• For XPath-based schemes, checks whether the element/node was matched by the
XPath expression(s) or not.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Filtering, Coloring, and Validating 19

For any given element, if the element is determined to be a “keeper,” the plugin
continues on to the next element. Conversely, if AXCM determines that the element
should not be kept, it will hide or delete the element and all its children, according to the
filter type. It then backs up to the previous element and continues down the tree.

The active filter scheme contains all the logic used to determine what content should
remain, and what should be removed. For details on this logic, see Filter schemes on
page 4-40.

Restoring a document or book

After performing a source file filter, you can restore your document or book to normal by
selecting AXCM > Filtering > Restore {doc type}. This function will remove all
instances of the “Hidden” condition tag in the restored document(s). The intent is to
restore the document to the actual condition previous to the filter action.

NOTE: This function may remove other native conditional text from the
document. For this reason, you should never run a source file filter
or post-filter restoration if you are still using native conditional text
manually. For information on native conditional text, see Important
note on native conditional text on page 2-7.

Conditionalizing (and filtering out) entire files

AXCM allows you to conditionalize an entire chapter of a book, and likewise filter out
the whole chapter as applicable. To conditionalize a chapter, simply use conditional
markup at the highest-level element of the main flow, like you would any other element.
If a filter scheme determines that the HLE should be removed, it assumes that the
entire file should be removed from the book.

Note that whole-chapter removal can only occur for duplicate file filters, because it
requires a permanent alteration to the filtered book. The plugin never makes
permanent alterations to your source files, so it cannot remove a file if you are
performing a source file filter. If a source file filter encounters an HLE that should be
hidden, it simply hides all content in the flow, which will normally leave you with blank
pages in your output. The ability to conditionalize and remove entire chapters is an
important benefit to using duplicate file filters, among others.

Creating and editing schemes from the filter dialog

The filter dialog provides the following buttons related to scheme management:

User Guide (v3.30) AXCM Plugin for FrameMaker®

20 Filtering, Coloring, and Validating

• New - Allows you to create a new “classic” scheme and optionally store it in the
scheme library.

• View/Edit - Allows you to view the scheme setup for the selected scheme and, if
the scheme is a classic scheme in the “Custom” category, allows you to edit it.
XPath-based schemes and any classic schemes in other categories cannot be
edited.

All custom schemes use the classic scheme format. For details on how classic filter
schemes work, see About “classic” vs. XPath schemes on page 4-28.

When you launch the dialog box for a new or editable scheme, the scroll box on the left
provides a list of all attributes and values found in the document(s) to be filtered. If you
have familiarity with classic scheme construction, the usage of this dialog box should
be generally intuitive, with the following notes:

• The dialog box allows you to add attributes and/or values to existing attributes.
These functions add to the dialog box list only, not the document(s) to be filtered.

• The following options affect the format of the attribute/value list in the dialog box
AND the behavior of the subsequent filter:

– Consider whitespace as an attribute value delimiter (tokenized values)
(see Attribute values delimited by whitespace (Tokenized strings) on page 4-50)

– Consider EDD-applied attribute defaults (see Considering EDD-applied
defaults on page 4-49)

• The following options affect the format of the attribute/value list in the dialog box but
have no effect on the subsequent filter:

– Ignore Unique ID and ID Reference attributes - Omits any attributes from the
list that are unique ID or ID Reference types. This is a recommended setting, as
these types of attributes are normally not used for conditional metadata.

– Assume that unspecified attributes mean "unconditional" - Causes the
“<no value>” value to automatically appear for any attribute added to the
scheme, as a dialog box convenience only (see <no value> and <any value> in
“classic” schemes on page 4-45).

Additionally, note the following:

• Like any classic filter scheme, a custom-defined scheme is a simple list of attributes
and values with an applicable rule-base that drives the filtering logic. In particular,
the use of <no value> for attributes may be very important. For more information,
see <no value> and <any value> in “classic” schemes on page 4-45.

• Like any classic scheme, if you specify an attribute but no valid values for it, any
element that has the attribute defined will be filtered out, regardless of specified
values. For more information, see Filtering out elements by type, using unique
attribute names on page 4-46.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Filtering, Coloring, and Validating 21

• If you create or edit a scheme but choose not to save it, it will be deleted following
the selection of another scheme in the filter dialog or the filtering action itself.

• If you save a new scheme, it will be stored in your main settings under the “Custom”
category in the classic schemes library, where it may be managed afterwards in the
classic scheme editor like any other scheme.

Coloring

Coloring text according to conditions is mostly an authoring convenience, allowing you
to see visually where your conditions are assigned. In this respect, the purposes of
coloring with the AXCM plugin are exactly the same as those associated with native
conditional text.

The process of conditional coloring with the plugin, however, is functionally much
different than native conditional text. Before attempting to set up schemes and perform
coloring actions, you should be aware of the following:

• Coloring does not occur until you manually run a scheme through the AXCM >
Coloring menu or associated shortcuts. The plugin does not include any automatic
coloring.

• Coloring is applied as a simple format override, much as if you opened the
paragraph designer, selected a color, and clicked Apply. It is therefore easy to
remove by refreshing the EDD definitions.

• When you run coloring on a whole document, the EDD definitions are first refreshed
to remove any previous coloring. This process will also remove any other format
overrides in the document.

• The active coloring scheme contains all the logic used to determine color
assignment. For more information, see Coloring schemes on page 4-31.

NOTE: Coloring should occur with reasonable reliability, but IT IS NOT
FLAWLESS. Format overrides do not always mix well with an
EDD-driven, structured environment and some anomalies may
occur. It should always work well enough, though, to clearly
indicate where your conditions are assigned. Note that in any case,
filtering should be flawless. If a certain piece of content does not
color as expected, it should still filter correctly. If it does not, the
software has a critical bug and you should report it to West Street.

Launching a coloring action

To launch a coloring action, you should bring the desired file to the front and select
AXCM > Coloring > Color {doc type}. Note the following:

User Guide (v3.30) AXCM Plugin for FrameMaker®

22 Filtering, Coloring, and Validating

• When you choose to color a selection only, the software colors the selected
element and all descendants. If no element is entirely selected, the software colors
the element that contains the insertion point, and all descendants. If there is no
insertion point, nothing happens.

• The software does not automatically apply coloring, so you may want to keep the
Esc 1 1 shortcut handy for coloring the current selection. In your preferences, you
can specify a default scheme to load upon startup that will be used for selection
coloring, until you change it.

• By default, the scheme selection box appears each time you launch a document or
book coloring action. You can stop this behavior by unchecking the option at the
bottom of the selection box. Afterwards, coloring will initiate as soon as you select
the respective command, using the most recently-selected scheme. If you want to
restore the appearance of selection box, you can select AXCM > Coloring > Set
Active Scheme to produce the same selection box, and recheck the option.

• When the software determines that a color should be applied, it looks for it by name
in the current document’s template. If it cannot find the color, it cannot apply it.

• When an entire book is colored, any chapter files that are closed will be skipped.

• Coloring will override any colors applied by paragraph and character formats, but it
will not override colors applied by condition indicators from native conditional text.

Removing coloring

Coloring by AXCM is accomplished by simple format overrides and is therefore easily
removed by refreshing the element definitions. You can do this the with the AXCM >
Coloring > Uncolor {file type} commands, which are nearly identical to the File >
Import > Element Definitions command, except that the Uncolor commands will also
remove change bars if you have the proper setting enabled in your local settings file.
File > Import > Element Definitions will not remove change bars.

Attribute validation

NOTE: Validation schemes must follow the “classic” scheme format.
AXCM does not support the concept of an XPath-based validation
scheme.

AXCM includes a validation feature that helps you prevent common issues associated
with attribute values and conditional markup. It may be used as an automatic process
during authoring, or you can run it on an entire document or book as a post-process
before filtering and publishing. When you run it on an entire file, AXCM produces a
hyperlinked report detailing all the issues it found.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Filtering, Coloring, and Validating 23

The following sections contain details on the four potential issues that validation can
detect. Before using validation, note the following:

• The software is programmed to recognize four potential issues, but not all four may
be important to you. For this reason, you can selectively decide which validation
“rules” should be active, using your local settings file. For more information, see
Local settings on page 2-9.

• AXCM has no association with element definition validation, launched through the
Element > Validate menu command.

Automatic validation

In your local settings file, you can opt to have validation occur automatically during key
user events, such as inserting elements and setting attributes. Any rule violations are
reported instantly with message boxes, and strikethrough text applied as applicable.

For auto-validation to work, the software must have an active validation scheme. In
your local settings, you can specify a default validation scheme to load upon startup,
such that auto-validation will begin to work immediately. If you do not specify a valid
default scheme, auto-validation will fail after startup until you manually set an active
scheme. For more information on local settings, see Local settings on page 2-9.

Validation rule #1 - Simple syntax

When using attribute values to denote conditional content, the syntax of the specified
values is extremely important. With rule 1 active, the validation feature will scan all
attributes contained in the active validation scheme, and ensure that all specified
values match those contained in the scheme. If the software finds a value in the
document that is not in the scheme, it will report it as an error. Note that it only scans
the values of the attributes found in the scheme, and all other attributes are ignored.

Validation rule #2 - Ancestor element lacking subordinate condition

Because of the natural inheritance that flows through a structure tree, it is normally an
error when something breaks that flow. When using attribute values to denote
conditions, this situation can occur when an element contains a condition that is not
shared by all its ancestors.

As an example, consider the following structure fragment:

User Guide (v3.30) AXCM Plugin for FrameMaker®

24 Filtering, Coloring, and Validating

This fragment is hierarchically sound because all conditions are properly nested and
the natural inheritance is not broken. The Section element contains all the conditions
shared by subordinate elements. This includes the p element with no value, because a
“no value” situation generally indicates to inherit parent conditions by default. This
fragment will filter normally for both products A and B, and no content will get lost.

Conversely, consider the following fragment:

This fragment has hierarchy issues because conditions are not properly nested. In
particular, the “ProductA” element is generally orphaned, because its condition is not
shared by the Section ancestor. To illustrate, consider the case where you are
filtering to produce a “Product A” version of this document. The Section element will
be removed during the filter process, because it does not apply to Product A. This
removal, however, will also remove the subordinate elements, including the p element

AXCM Plugin for FrameMaker® User Guide (v3.30)

Filtering, Coloring, and Validating 25

tagged for Product A. So, this element will never appear in a Product A version of the
document despite its tag, due to the mismatch in conditional hierarchy.

During validation, this scenario is checked for all attributes found in the validation
scheme. Note that this rule does not look at the validity of the values themselves;
rather, it only looks for mismatches between ancestors and descendants with any
value. Therefore, the specific values specified in the validation scheme are not used for
this rule, unlike rule #1.

Rule #3 - Unspecified descendants

In some specialized cases, you may require that all elements explicitly specify all
applied and inherited conditions. For example, consider the following structure
fragment:

In a purist scenario, the empty product attribute on the subordinate p element might
be considered an error, because it does not explicitly contain the contain the condition
of its parent. If copied and pasted elsewhere, its original conditional nature might be
lost because it was dependent upon its parent to inherit the Product A condition.

Normally, an empty attribute indicates to inherit ancestor conditions by default, and this
situation is not considered an error. Therefore, rule #3 is frequently disabled by users.

Rule #4 - Empty attribute not allowed

This rule flags any attributes that are not permitted to be unspecified, indicated by the
lack of a “<no value>” inclusion in the active validation scheme. That is, if a particular
attribute in the scheme does not have “<no value>” included in the list of valid values,
the attribute is not permitted to be empty.

This rule is a largely a specialized version of rule #1, provided for convenience. For
more information on rule #1, see Validation rule #1 - Simple syntax on page 3-23.

User Guide (v3.30) AXCM Plugin for FrameMaker®

26 Filtering, Coloring, and Validating

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 27

4: Scheme Setup And
Other Main Settings

Schemes are the configuration workhorse of the plugin, where you specify exactly how
you want it to color, filter, and/or validate your content. Rather than making manual
decisions about how to process your content with each action, you put this logic into
schemes and simply run the desired scheme whenever necessary.

NOTE: Before attempting to work with schemes, you should understand
the two different types offered by the software. For more
information, see About “classic” vs. XPath schemes on page 4-28.

You can have as many schemes as you want, and even share them at an enterprise
level. For more information, see About the main settings file on page 2-9.

General information about schemes and categories

In most respects, a scheme is little more than:

• For “classic” schemes, a collection of attributes and values, or

• For XPath-based schemes, a list of XPath expressions

...and perhaps some additional options. When run, the plugin navigates the document
structure tree(s) and stops at each element, comparing its markup to the scheme setup.
If they match, some respective action occurs, such as the coloring of the element
during coloring or the preservation of content during filtering.

Because of their similarities, the three scheme types (coloring, filtering, validation) look
much the same and use the same editors (AXCM > Main Settings > “Classic”
Schemes or XPath Schemes). The scheme editors include a drop-down menu that

User Guide (v3.30) AXCM Plugin for FrameMaker®

28 Scheme Setup And Other Main Settings

allows you to switch between scheme type that you are editing. All schemes are stored
in the main settings file, described in more detail under About the main settings file on
page 2-9.

The plugin also provides a higher level of categorizing schemes, known simply as
scheme categories. A category is a collection of any number of coloring, filter, and
validation schemes, and serves as a mechanism to help you keep schemes in order.
The way you categorize schemes has no effect on how the plugin operates. Rather, it is
a basic feature that allows you to group common schemes together and prevent
scheme lists from getting too long.

NOTE: Category names must be unique across “classic” and XPath-based
schemes.

Although all schemes are constructed in a similar manner, the way they behave during
processing may differ. For example, the details of attribute/value/XPath matching
differs between coloring and filter schemes. These details are explored in the individual
sections about each scheme type.

NOTE: Schemes are completely document- and book-independent. You
can run any scheme of any type on any document or book. In most
cases, you will have a number of schemes that you run on any
given document set, and you may share schemes between
different document sets. The manner in which you name and
categorize your schemes is entirely up to you and no scheme is
ever restricted to a particular file.

About “classic” vs. XPath schemes

Originally, AXCM (ABCM) was focused solely on attributes and values as the
mechanism for expressing conditions within documents. When schemes were created,
they were represented by simple collections of attributes and values, which drove an
attribute-focused rule base during coloring, filtering, and validating. While this method
was useful in most conditional text workflows, it lacked some flexibility with more
advanced scheme setups.

With version 2.0 of AXCM, a new method of scheme construction was introduced
known as XPath-based schemes. This methodology relies on XPath expressions to
build schemes, providing a very rich set of semantics for managing conditions including
the ability to recognize:

• Element tags and hierarchical relationships

• Element and attribute text fragments

• Complex logical evaluations using AND, OR, NOT, and much more

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 29

As such, the original type of scheme is now referred to as a “classic” scheme, both in
the AXCM GUI and this document. Before working with schemes you should be sure
you understand the difference between the two types. While the software allows you to
use both types simultaneously, a good understanding will allow you to choose the type
that best fits your needs.

Note that validation schemes only apply to the classic scheme type. The concept of
validation does not fit well with a scheme constructed of XPath expressions.

Important notes about XPath-based schemes
• During scheme setup, XPath-based schemes are considerably more challenging to

understand and perfect. While they add a significant amount of flexibility, this
flexibility comes at the cost of simplicity. You should test your schemes thoroughly
before using them in a production environment. Despite the complexity, you should
find that a set of common scheme constructions serve most of your needs, with
only minor adjustments to attribute names, values, and/or element tags required to
adapt schemes to new applications. And of course, once a scheme is set up, it
needs no further attention unless changes are required.

• The AXCM tutorial for XPath schemes may be your best option for learning how
XPath-based schemes work and obtaining some sample expressions.

• All XPath expressions must use the context of the highest-level element for their
respective queries. Therefore, all expressions must begin with a forward slash (/).

• For filtering, text nodes will be filtered out unless you explicitly provision otherwise.
You can do this one of two ways:

– Write your expressions to match text nodes, typically by using the node()
notation rather than the asterisk shortcut. For example, you can use:

//node()[@Product = "ProductA"]

...rather than:

//*[@Product = "ProductA"]

– Set your local settings (see Local settings on page 2-9) to ignore text nodes
entirely. If you never plan to filter out text nodes, this option can save processing
time.

Note that “text nodes” in this context is limited to untagged text between tagged
elements, or in other words, text nodes that are part of an element with a mixed
content model. AXCM and its XPath do not recognize the implied text node of a
text-containing element without other tagged child elements.

• AXCM uses the XPath engine that was originally built for FrameSLT, another West
Street plugin. As a temporary source for XPath documentation, a copy of the
FrameSLT User Guide XPath chapter is provided as a reference. If you are not
familiar with the extent of West Street XPath support, you should browse this
document, as the software only supports a subset of the full W3C specification. If
you need any additional help, please contact West Street.

User Guide (v3.30) AXCM Plugin for FrameMaker®

30 Scheme Setup And Other Main Settings

General scheme editing procedures - “Classic” schemes

All classic schemes are edited using the classic scheme editor (AXCM > Main
Settings > “Classic” Schemes). Each scheme type (coloring, filtering, validation)
looks similar, as each is one or more collections of attributes and values. The following
are some general tips to keep in mind while editing classic schemes:

• A scheme can contain multiple attributes and unique values for each. When you are
looking at the attributes and values on the right, the list of values will always reflect
the currently selected attribute only.

• When you add attributes and values to a scheme, the plugin provides a dialog box
with a drop-down menu. This menu is prepopulated based on information found in
your master attribute library. For more information, see Master attribute library on
page 4-51.

• When you add coloring rules, the plugin provides a dialog box with a drop-down
menu. This menu is prepopulated based on information found in your master colors
list. For more information, see Master colors list on page 4-52.

• Like all AXCM dialog boxes, you can double-click an item in a scroll box to edit it.

• All schemes may include a set of advanced options, accessible by clicking the
Advanced Options button. For more information on these options, see Advanced
scheme options on page 4-48.

General scheme editing procedures - XPath-based schemes

All XPath-based schemes are edited using the XPath scheme editor (AXCM > Main
Settings > XPath Schemes). The following are some general tips to keep in mind
while editing XPath-based schemes:

• Non-parsable XPath expressions are not usable and will be rejected.

• The dialog box retains a general history of recent XPath expressions you have
entered and/or edited. You can control the length of this history in your local
settings (see Local settings on page 2-9).

• For coloring schemes, you can change the color or style of a rule simply by making
a selection in the respective drop-down list. For colors, it is recommended that you
have all required colors stored in your master color list, rather than attempting to
type in the drop-down list. For more information, see Master colors list on
page 4-52.

• The XPath expressions box has a Test button which allows you to test your
expressions on the active document. For more information, see About the XPath
expression tester on page 4-31.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 31

• Like all AXCM dialog boxes, you can double-click an item in a scroll box to edit it.

• All schemes may include a set of advanced options, accessible by clicking the
Advanced Options button. Some of these options are only applicable to classic
schemes. For more information on these options, see Advanced scheme options
on page 4-48.

About the XPath expression tester

The XPath-based scheme editor includes an expression tester, launched with a Test
button below the expressions box. This utility is a simple tool for testing one or all of
your expressions against the active document to determine what element(s) are
matched. While it is a convenient utility that can help you perfect a scheme before ever
using it, you should understand the information in this section before using it.

Most importantly, you should remember that the utility is a simple matching tool only,
which does not necessarily provide a clear indication of what the scheme will do unless
you pay close attention to hierarchy. Especially with filter schemes, you must remain
aware of an unmatched element anywhere in the hierarchy which could cause the
removal of all descendant elements when it gets filtered out, despite what the
expression(s) match on those elements. For example, you may have a section-level or
table row element that you have conditionalized for removal, but the paragraph
elements below it are generally unconditional at face value. The tester makes its best
attempt to represent hierarchical relationships with respect to higher-level matches, but
some interpolation may still be necessary.

Additionally, note the following:

• Because XPath-based schemes use the AND logic between expressions, so does
the expression tester when you select the (test all) option. That is, only nodes that
match all expressions will be included.

• You can edit expressions in the expression tester and/or the scheme editor, with
each dialog box automatically refreshing from the other.

• After obtaining the matches, you can a type match number directly in text box
beside the << and >> buttons, then click one of those buttons to jump to that match.

• The tester never alters test files, other than to change the text selection. If you
notice that testing a document appears to cause the “unsaved changes” warning, it
is because text selection with an API client such as ABCM automatically causes
FrameMaker to indicate a change. Your content, however, has not been changed.

Coloring schemes

Coloring text according to conditions is mostly an authoring convenience, allowing you
to see visually where your conditions are assigned. In this respect, the purposes of

User Guide (v3.30) AXCM Plugin for FrameMaker®

32 Scheme Setup And Other Main Settings

coloring with the AXCM plugin are exactly the same as those associated with native
conditional text.

A coloring scheme includes one or more “rules,” each of which indicates a color and the
parameters to match in order to apply that color. The order of these rules is often
critically important for achieving the desired results. For more information, see Coloring
rule order on page 4-35.

While similar in concept to native conditional tag indicators, the process of conditional
coloring with AXCM is functionally much different. Coloring with the plugin is a highly-
customizable and specific process. With your schemes, you must indicate exactly what
conditions should receive what color, including any details about condition overlap.
There is no automatic magenta text or overlap coloring with the plugin... if you want
overlaps colored a certain way, you must specify as such. Furthermore, a scheme only
colors the conditions you want, and ignores any others that might exist. In this manner,
it is very different than native conditional text, which forces you to view one coloring
pattern only, and all conditions at a time or none at all.

Because of this flexibility, you can have as many schemes as you want for any
particular document or structure definition, and run whichever one applies the particular
coloring pattern you want to see at the time. It is common to color content in different
fashions depending on what you want to see, particularly if you have many conditions
and/or conditional overlaps.

NOTE: For more information on running a coloring scheme, see Coloring
on page 3-21.

Basic coloring scheme behavior

When you run a coloring scheme, the process starts at some element, and steps
logically throughout each descendant element performing the coloring function. At each
element, the plugin stops and does one of the following:

• For classic schemes, compares the attributes/values on the element to those in the
rules of the scheme, looking for a match

• For XPath schemes, checks whether the element matches all of the XPath
expressions specified for one of the rules (that is, uses an AND logic between
expressions if there are more than one)

It goes down each rule in order, looking for a match. It applies the color assigned to the
first matching rule it finds, if any. Once a rule is applied or all rules have been
exhausted, the plugin steps to the next element and does the same thing until all
elements are completed.

If you run coloring on a whole document or book, the starting point is the highest-level
element. If you run it on a selection, the starting point is the selected element, or the

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 33

element that contains the insertion point. All coloring is launched through the AXCM >
Coloring menu or associated shortcuts. You are encouraged to become accustomed
to the shortcut for coloring a selection (Esc 1 1), because you may use it frequently to
refresh the area in which you are working.

Where the colors come from

During a coloring action, if a rule matches, the plugin attempts to find the associated
color(s) by name in the document being processed. If it finds a color, it will retrieve the
associated color definition and apply it. If it does not, it will warn you that the color does
not exist.

For this reason, it is important that you specify colors in your schemes that your
template(s) actually contains. To help prevent errors, you can customize the drop-down
list of colors that appears in the scheme editor to reflect the colors that are valid for your
documents. For more information, see Master colors list on page 4-52.

Coloring scheme details - “Classic” schemes

To create and’/or edit a classic coloring scheme, you should work in the classic scheme
editor (AXCM > Main Settings > “Classic” Schemes). Be sure that you have the
correct category and scheme type selected. For more information on general scheme
editing procedures, see General scheme editing procedures - “Classic” schemes on
page 4-30.

A coloring scheme includes one or more rules, each of which contains a set of
attributes and values. At a basic level, when the attributes/values of a rule match those
on an element, the element receives the color assigned to the rule. There are, however,
a number of technical details concerning coloring schemes, described in the following
list:

• Attribute/value matching criteria - Rule matching behavior is very extensible with
the Match all values option. For more information, see Attribute/value matching
criteria on page 4-34.

• Rule order - Rule order is very important, because for any given element, the rules
are processed in the order which they appear, and only the first matching rule is
applied. For a more detailed explanation, see Coloring rule order on page 4-35.

• <no value> and <any value> - These standard items can be added to the values
for any attribute, and are important to understand. For more information, see <no
value> and <any value> in a coloring scheme on page 4-36.

• Other formatting capabilities - Coloring rules support the same additional style
options as native conditional text, such as underlining and strikethrough. These
options are specified on a rule-by-rule basis and are applied as simple format
overrides, like coloring.

User Guide (v3.30) AXCM Plugin for FrameMaker®

34 Scheme Setup And Other Main Settings

• Changing a rule color - The color assigned to a rule can be changed by selecting
the rule in the list and double-clicking it or clicking Edit.

• Override coloring of child elements - This rule option causes all coloring of any
child elements to be skipped, if the rule is matched. All child elements will receive
the color of the matched element.

Attribute/value matching criteria

During coloring, each element is tested against each coloring rule in the scheme, until
one matches or the rules are exhausted. Each rule has an independent setting called
“Match all values,” which significantly affects the criteria required for an attribute/value
match, as follows:

• The option is checked - If “Match all values” is checked, every single attribute and
specified value in the rule must appear on the element in order to make a match.
The element may have more attributes and values than appear in the rule, but it
must at least have all those specified in the rule.

• The option is NOT checked - If the option is not checked, the rule will match if a
single value from a single rule attribute is matched.

For example, consider the following element:

...and consider the following rule:

This rule will match whether or not “Match all values” is checked, because it matches at
least one value of the outputformat attribute, and it also happens that every value in
the rule is found on the element. The rule doesn’t care about the product attribute at
all, because it isn’t specified in the rule.

Rule color Attribute(s) Value(s)

Green outputformat PDF

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 35

Similarly, consider the following rule:

This rule will also match in either case, because every attribute and value in the rule is
found on the element, so the state of the “Match all values” checkbox doesn’t matter.

Conversely, consider the following rule:

This rule is different. If “Match all values” is unchecked, the rule will match, because at
least one value in the rule is found on the element. However, if it is checked, the rule
will not match, because “ProductC” is not found in the product attribute of the
element.

The “Match all values” option and rule order are your primary tools for designed
detailed and effective coloring schemes. For more information on rule order, see
Coloring rule order on page 4-35.

Coloring rule order

Rule order in a coloring scheme is critically important, because for each element
evaluated, the plugin will choose the first rule that matches and ignore the rest.
Therefore, you must be sure that your most “specific” rules are near the top, and the
more “general” rules are near the bottom.

For example, suppose you want to color all your “ProductA” content red, and all your
“ProductB” content green. And, to indicate a mix of conditions, you want to color
content for both products in blue. In this case, you might be tempted to create the
following scheme:

Rule color Attribute(s) Value(s)

Green outputformat PDF

product ProductA

Rule color Attribute(s) Value(s)

Green outputformat PDF

product ProductA

ProductC

Rule # Rule color Attribute(s) Value(s)

1 Red product ProductA

User Guide (v3.30) AXCM Plugin for FrameMaker®

36 Scheme Setup And Other Main Settings

At first glance, this scheme seems to have all the rules you need. More than likely,
though, you will never get to see your blue color applied. For an explanation, consider
the following element:

This element is one that should be colored blue, according to your original intentions.
However, the plugin will never get to the blue rule (#3), because the first rule (red) will
always match first. Its only criterion is that the product element contains “ProductA”,
which this element does. So, it colors the element red and never gets to your blue rule.

To make a scheme like this work, you must be more specific with rule order and use the
“Match all values” option appropriately. Consider the same basic scheme, with the rules
and options rearranged:

Now, the “composite product” rule is at the top, so it will be evaluated first. And, it is
forced to match all the values in order to qualify. In this case, the Section element will
be properly colored blue, and any elements for ProductA or ProductB only will be
colored red or green, respectively.

<no value> and <any value> in a coloring scheme

Like any classic scheme type, you can specify “<no value>” or “<any value>” for any
attribute. These values, which automatically appear in the applicable drop-down
menus, mean literally what they say: no value or any value. “No value” is synonomous

2 Green product ProductB

3 Blue product ProductA

ProductB

Rule # Rule color Attribute(s) Value(s) Options

1 Blue product ProductA

ProductB

Match all values

2 Red product ProductA

3 Green product ProductB

Rule # Rule color Attribute(s) Value(s)

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 37

with an empty attribute, and “any value” is synonymous with an attribute that contains
any value.

As an example, consider the following element:

...and consider the following rule:

This rule will match, because the product attribute contains any value. The converse
is true, in that a specification of “<no value>” would only match if the attribute is empty.
Note the following about <any value>/<no value>:

• If <any value> and <no value> both appear for any given attribute, it means literally
“color me if I have this attribute, and it is either empty or specified.” In other words,
it will color any element based on the mere presence of an attribute, regardless of
its contents.

• <any value> and the “Match all values” option are generally incompatible, because
the option requires an explicit list to work logically.

Other coloring scheme options and features

Note the following miscellaneous items about coloring schemes:

Rule color Attribute(s) Value(s)

Green product <any value>

User Guide (v3.30) AXCM Plugin for FrameMaker®

38 Scheme Setup And Other Main Settings

• <refresh EDD> as a color - The “<refresh EDD>” option always appears in the
colors list, and can be used in the place of a color for any rule. This option will
cause the plugin to refresh the EDD definition for any element it matches, removing
all format overrides for that element and any descendants. No colors are applied,
unless the EDD definition directs as such.

• <skip> as a color - The “<skip>” option always appears in the colors list, and can
be used in the place of a color for any rule. This option will cause the plugin to do
nothing if the rule matches, and simply step to the next element. This option is
intended for certain specialized use only and may not be commonly found in
schemes.

• Override coloring of child elements - This option is available on a rule-by-rule
basis, near the “Match all values” option. If a rule matches and this option is
specified, it causes the color to be applied to the respective element and all
descendant elements, with no consideration for descendant attribute conditions. In
essence, it causes the plugin to discontinue its walk down the current branch being
processed, and back up to start down the next logical branch. Any descendant
elements therefore remain unprocessed.

Coloring scheme details - XPath-based schemes

To create and’/or edit an XPath-based coloring scheme, you should work in the XPath
scheme editor (AXCM > Main Settings > XPath Schemes). Be sure that you have the
correct category and scheme type selected. For more information on general scheme
editing procedures, see General scheme editing procedures - XPath-based schemes
on page 4-30.

A coloring scheme includes one or more rules, each of which contains one or more
XPath expressions. Aside from the complexity of XPath, the functional logic is simple...
for each element, if it is matched by all expressions for a rule, it receives the color
and/or style assigned to the rule. AXCM walks down the element tree in hierarchical
order, testing each element against each rule in order. For each element, the first rule
that matches (if any) is applied and the plugin resumes with the next element.

Therefore, the challenging aspect of an XPath-based coloring scheme is building the
expressions that perform the desired matching. The following sections provide some
examples to help you get started.

Matching a single, basic condition

Assume that you have a document with Product attributes and one of the possible
values is “ProductA.” If you wanted to color all ProductA content Red, you could use a
Red rule with the following expression:

//*[@Product = "ProductA"]

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 39

This expression says literally, “Match me if I am an element with a Product attribute
and that attribute is set to “ProductA”. If you use tokenized values for the Product
attribute, you could use the contains() function for added flexibility. For example:

//*[contains(@Product, "ProductA")]

Matching and differentiating two basic conditions

Assume that you have a document with Product attributes and the possible values
“ProductA” and “ProductB”. And, assume you want to color all ProductA content Red,
all ProductB content Green, and all overlaps Blue. In this case, you could use the
following set of rules:

There are many variations that could produce the same effect. For example, consider
the following alternative setup which would be important if your attribute values are
tokenized:

Despite any variations, it is important that the “overlap” rule is listed first, because
otherwise one of the other rules would match the same element first and apply its color
instead. For an explanation of rule order from the perspective of classic schemes, see
Coloring rule order on page 4-35.

Coloring everything except a certain condition

In some cases, you may want to color everything except a certain condition. For
example, using the previous examples of Product and “ProductA”, perhaps you want

Rule # Color Expression(s)

1 Blue //*[@Product = "ProductA"]

//*[@Product = "ProductB"]

2 Red //*[@Product = "ProductA"]

3 Green //*[@Product = "ProductB"]

Rule # Color Expression(s)

1 Blue //*[contains(@Product, "ProductA") and
contains(@Product, "ProductB")]

2 Red //*[contains(@Product, "ProductA")]

3 Green //*[contains(@Product, "ProductB")]

User Guide (v3.30) AXCM Plugin for FrameMaker®

40 Scheme Setup And Other Main Settings

to simply color everything that does not apply to ProductA as gray, making it easier to
isolate the ProductA content yet still in its normal color. You could use a rule such as:

This expression says literally, “Color me gray if I have a Product attribute set to
something and it is not set to “ProductA”. This type of scheme setup is particularly
useful when you have deep layers of conditional content. For example, assume the
following conditional aspects also apply:

• You use an Audience attribute to indicate the effective audience and for this
particular deliverable, an element must have it unspecified or set to “All”.

• You use special Comment elements to insert your own personal notes. For
preparing deliverables, you don’t care about any attributes on this element; rather,
you simply want every instance of the element to be removed from every
deliverable, every time.

With these additional conditional stipulations, you might construct the following coloring
scheme to color everything gray except deliverable ProductA content:

Note that even though multiple rules are required for the desired effect, only one color
is ultimately required for the output. Therefore, each rule applies the same color, as a
cascading logic for graying all the material that does not apply to a ProductA
deliverable.

Filter schemes

Filtering is the process by which you produce conditional output. It is loosely analogous
to the “Show/Hide” process for native conditional text, with far more flexibility and
options.

A filter scheme is mostly a simple collection of either attributes and values, or for
XPath-based schemes, a collection of XPath expressions. During the filtering process,

Rule # Color Expression(s)

1 Gray //*[@Product != "" and not(contains(@Product,
"ProductA"))]

Rule # Color Expression(s)

1 Gray //*[@Product !="" and not(contains(@Product,
"ProductA"))]

2 Gray //*[@Audience !="" and not(contains(@Audience, "All"))]

3 Gray //Comment

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 41

the plugin examines each element in a logical fashion, starting at the highest-level
element and walking logically throughout each branch. If the markup on the element
matches the attributes/values/expressions in the scheme, the element is preserved. If it
does not, the element and all descendants are removed or hidden.

A filter scheme is structurally more simple than a coloring scheme because it has no
rules, only one set of attributes/values or expressions. This difference is because the
filtering process is a simple yes or no decision... not one where multiple colors might
need to be evaluated and applied.

A critical point to understand when building schemes is that you are specifying the
content to “keep,” not the content to hide. This aspect of filter schemes makes them
fundamentally different than showing/hiding native conditional text. With the native
Show/Hide dialog box, you must focus on what conditions to hide, in order to produce
the output you want to keep. This logic is counterintuitive and is overcome by AXCM
filter schemes, in which you specify what you want to stay in your output. All other
conditions not specified are either ignored or hidden by default, depending on the logic
of the scheme.

Note the following additional items about “classic” filter schemes:

• Attributes not specified in the scheme are ignored - Only those attributes found
in the scheme are evaluated, and only then if the respective element contains them.
All other attributes on the element are ignored, regardless of their contents. In this
way, you can set up schemes that only consider certain conditions. This process is
is much different than showing/hiding native conditional text, in which case you
must always consider all conditions every time you want to show/hide, because
they must all be dealt with in the Show/Hide dialog box.

• Matching requires at least one value match for each scheme attribute - If at
least one value matches on the element between the attributes in the scheme and
the attributes on the element, the element is preserved. That is, for each attribute in
the scheme, at least one value must be found at the element, otherwise it is
removed. For examples of this behavior, see General filter scheme matching
behavior - “Classic” schemes on page 4-42.

• <no value> and <any value> - These items, which mean literally what they say,
may be very important for proper scheme behavior. For more information, see <no
value> and <any value> in “classic” schemes on page 4-45.

Note the following additional items about XPath-based filter schemes:

User Guide (v3.30) AXCM Plugin for FrameMaker®

42 Scheme Setup And Other Main Settings

• An element must be matched by all expressions in the scheme, otherwise it
will be filtered out - In other words, there is a strict AND logic between multiple
expressions in a scheme. If you require an OR logic (or any other logical operator),
it must be built into the XPath expression(s). XPath is extremely versatile and can
support a wide variety of logical possibilities.

• Text nodes will be filtered out unless you have provisioned otherwise - To
preserve text nodes in your filtered output, you must either account for them in your
XPath expressions or set your local settings to ignore them globally. For more
information, see Important notes about XPath-based schemes on page 4-29 and
Local settings on page 2-9.

NOTE: For general information on running a filter, see Filtering on
page 3-15.

General filter scheme matching behavior - “Classic” schemes

The logic for matching (versus discarding) during a filter action is generally simple. For
each element evaluated, the following rules apply:

• If an attribute is on the element and in the scheme, that attribute is evaluated. At
least one value must match between the two, otherwise the element is flagged for
removal.

• If an attribute in the scheme does not exist on the element, or vice versa, it is simply
ignored.

For example, consider the following element:

...and consider the following scheme setup:

During evaluation, the Section element will be preserved. It has an outputformat
attribute which is also contained in the scheme, and at least one value (PDF) matches
between the two. The product attribute is not included in the scheme, so the scheme
doesn’t care about it at all.

Attribute(s) Value(s)

outputformat PDF

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 43

Conversely, the following scheme setup would cause the removal of the element:

The following scheme setup would allow the preservation of the element, because at
least one value matches on both scheme attributes:

The same applies to the following scheme. This scheme adds another value to match
on the product attribute that the element doesn’t have, but it doesn’t matter because
the ProductA value does match:

The following scheme would also preserve the element. The customer attribute is
never evaluated because it doesn’t exist on the element:

The following scheme, however, would not match and would flag the element for
removal. Even though the outputformat attribute makes a match, the product
attribute does not, and at least one match must occur for all attributes evaluated:

Attribute(s) Value(s)

outputformat HTML

Attribute(s) Value(s)

outputformat PDF

product ProductA

Attribute(s) Value(s)

outputformat PDF

product ProductA

ProductC

Attribute(s) Value(s)

outputformat PDF

customer CustomerA

Attribute(s) Value(s)

outputformat PDF

product ProductC

User Guide (v3.30) AXCM Plugin for FrameMaker®

44 Scheme Setup And Other Main Settings

General filter scheme matching behavior - XPath-based schemes

The logic for matching (versus discarding) and element during a filter action is generally
simple. If an element is matched by each expression in the scheme, it is preserved.
Otherwise, it is removed, along with any descendant elements.

For example, consider the following element:

...and consider the following scheme setup, designed to filter for a “ProductA”
deliverable:

During evaluation, the Section element will be matched (preserved) because the
expression effectively says “match me” if:

• The element doesn’t have a product attribute, or

• It has an unspecified product attribute, or

• It has a product attribute set to “ProductA”.

Conversely, the following setup will cause the element to be filtered out, because the
second expression does not match it.

The following setup exhibits similar behavior, but in this case it is specifically excluding
an element assigned to PDF output, rather that simply including HTML only:

Expression(s)

//*[not(@product) or @product="" or @product="ProductA"]

Expression(s)

//*[not(@product) or @product="" or @product="ProductA"]

//*[not(@outputformat) or @outputformat="" or @outputformat="HTML"]

Expression(s)

//*[not(@product) or @product="" or @product="ProductA"]

//*[not(@outputformat = "PDF")]

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 45

Because XPath also supports matching based on element names, content, and
hierarchy, you have many additional options for determining conditional content. Using
the previous example, assume that you also have InternalComment and
ExternalComment elements that you would like filtered out as well. For production-
ready publishing of ProductA content, you could enhance the scheme as follows:

The final expression may seem a bit confusing, as it contains an “and” statement, yet
the explanation claims an “or” logic. Consider the literal meaning of the expression,
which is “match me if I am not an InternalComment and I am not an
ExternalComment.” In other words, it says “don’t match me if I am an
InternalComment or an ExternalComment”, which in filter scheme logic means
“filter me out.”

Remember that you are always specifying the content to keep, not the content to
remove. See the AXCM tutorial on XPath-based schemes for additional information
and functional examples of XPath-based filter schemes.

NOTE: West Street acknowledges the initial difficulties of understanding
XPath-based scheme logic, even for individuals with XPath
expertise. Please do not hesitate to contact us for assistance.

<no value> and <any value> in “classic” schemes

NOTE: The <no value>/<any value> convention has no relevance for
XPath-based schemes. Any logic to handle empty and/or specified
attributes should be built into the XPath expression(s), in a manner
supported by the XPath standard.

Like any scheme type, you can specify “<no value>” or “<any value>” for any attribute.
These values, which automatically appear in the applicable drop-down menus, mean
literally what they say: no value or any value. “No value” is synonymous with an empty
attribute, and “any value” is synonymous with an attribute that contains any value.

These items, especially “<no value>”, may be critically important for a properly-
functioning filter scheme. An “unconditional” situation is frequently indicated by an
empty attribute, analogous to the native conditional text practice of simply assigning no

Expression(s)

//*[not(@product) or @product="" or @product="ProductA"]

 (...filters out anything with a product attribute that is not empty or set to “ProductA”)

//*[not(@outputformat = "PDF")]

 (..filters out anything with an outputformat attribute that is not set to “PDF”)

//*[not(self::InternalComment and self::ExternalComment)]

 (...filters out any element with the tag InternalComment or ExternalComment)

User Guide (v3.30) AXCM Plugin for FrameMaker®

46 Scheme Setup And Other Main Settings

tag to unconditional content. Unlike native conditional text, however, the plugin does
not mandate this assumption, and if you intend to use empty attributes to denote an
unconditional situation, you must provide for this convention in your schemes using
“<no value>” as applicable.

As an example, consider the following two elements:

The first element is designated for PDF output, while the second element has no
specification. This convention would typically indicate that the second element is
unconditional with regards to output format, and should always be preserved through
any outputformat-based filter. Assuming this is the case, the scheme must specify
the following to produce PDF output:

With this scheme, both elements will be preserved. If the scheme failed to include “<no
value>”, the second element would be filtered out, because “PDF” does not match a
literal state of no value. Only the special “<no value>” flag does. Therefore, any
architecture that uses empty attributes to denote an unconditional state must be
incorporated with schemes that use “<no value>” to designate as such.

The “<any value>” flag is similar in concept, except that it matches if the respective
attribute is populated with any value at all. The “<any value>” flag is likely to be used
much less often, if at all.

Filtering out elements by type, using unique attribute names

NOTE: This technique applies to “classic” schemes only. For XPath-based
schemes, use the XPath syntax to explicitly identify content to filter
out.

By way of scheme setup, the plugin provides a way to filter out all elements with a given
attribute, regardless of its contents. This feature provides a way of filtering all elements
of a certain type in a blanket fashion, if they are elements that you want removed from
the output regardless of attribute contents.

Attribute(s) Value(s)

outputformat <no value>

PDF

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 47

A common usage of this feature is with authoring comments, when a structure
definition reserves a special element for them. If you put authoring comments directly in
your text, it is likely that you will want to filter them all out before producing deliverable
output. And, it is likely that you will want them all out period, without any regard for
attribute contents.

As an example, consider the following element:

Before producing output for customers, it is likely that the author would like to remove
all Comment elements like this completely, regardless of attribute contents. To
accomplish this with a filter scheme, you can specify an attribute and leave the Values
box blank. This effectively says to the plugin, “There are no valid values at all for this
attribute, so the attribute itself is invalid. Whenever the attribute is encountered,
therefore, just remove the parent element.” The scheme dialog box might look
something like the following:

To make this feature work effectively, the attribute you choose should be unique to the
element(s) you are trying to filter out. For example, the attribute chosen in this example
is Author. This scheme setup will cause the removal of any element with an Author
attribute, so if you only intend for Comment elements to be removed in this fashion, the
Author attribute must be unique to Comment elements.

User Guide (v3.30) AXCM Plugin for FrameMaker®

48 Scheme Setup And Other Main Settings

The use of this convention allows great flexibility with storing non-publishable data in
your documents, because once a scheme is set up, you can be assured that it will all
be removed during filtering, every time. The risk that an errant comment will remain in
the document because of misassigned conditional text is eliminated.

Validation schemes

NOTE: Validation schemes are configurable as “classic” schemes only.
While they can be built and run on any document, the concept of
building a validation scheme with XPath expressions is not
applicable.

Validation schemes direct the behavior of attribute validation feature, and are
essentially a collection of the attributes and valid values that you use for your
conditions. For a complete explanation of how the validation feature works, see
Attribute validation on page 3-22.

Validation schemes are constructed with the same editor as other schemes, using the
standard controls. Note the following about validation schemes:

• Because a validation scheme is a collection of valid attributes and values, you
should have a separate scheme for each document set that uses different attributes
and values for conditions. In other words, for any set of documents that uses the
same exact attributes and values for setting conditions, there should be one unique
validation scheme.

• <no value> and <any value> may be specified for attributes in a validation scheme,
and like other schemes, they mean literally what they say. If you specify <no value>
for an attribute, that attribute is not permitted to contain any values. If you specify
<any value>, the attribute can contain any value, but it cannot be empty. Either of
these specifications should appear alone, because combining them with explicit
values and/or each other is illogical and would serve no purpose.

• The advanced scheme options apply, as with all schemes. For more information,
see Advanced scheme options on page 4-48.

Advanced scheme options

For any scheme, you can access the advanced options by clicking the Advanced
Options button under the schemes list, in the scheme editor. This section describes
the options available, on a scheme-by-scheme basis.

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 49

NOTE: Each scheme has its own independent set of advanced options.
When you edit these options, you are editing them for the selected
scheme only.

Advanced options include:

• When evaluating attribute values, consider EDD-applied defaults - See
Considering EDD-applied defaults on page 4-49.

• When evaluating attributes and values, ignore case-sensitivity (Classic
schemes only) - See Ignoring case-sensitivity on page 4-49.

• Consider whitespace as an attribute value delimiter (Classic schemes only) -
See Attribute values delimited by whitespace (Tokenized strings) on page 4-50.

• Process all flows - See Processing all flows on page 4-51.

Considering EDD-applied defaults

In an EDD, you can specify default values for attributes which appear in the Structure
View in italics. For example, the following note element has customer attribute with a
default value of “WestStreet” assigned:

While they do appear in the Structure View, default values aren’t actually “real” and do
not appear in the FrameMaker attribute editor. By default, AXCM will ignore them while
processing, unless you check this advanced scheme option. If you do check it, all
default values are regarded the same as any value that was explicitly set.

Ignoring case-sensitivity

NOTE: This option does not apply to XPath-based schemes which
necessarily process all markup in a case-sensitive fashion. If you
require case-insensitivity, consider using the contains-ci()
function. See the FrameSLT User Guide for more information.

In most processes involving XML and other structured content, case-sensitivity is
generally the rule. This is especially true when referring to markup qualities, such as
attribute names and values. By default, all processing by AXCM adheres to strict case-
sensitivity when comparing scheme parameters to attributes and values in your
documents.

User Guide (v3.30) AXCM Plugin for FrameMaker®

50 Scheme Setup And Other Main Settings

However, if you check the “ignore case-sensitivity” advanced option, AXCM will
completely ignore the case of attributes and values during evaluation. For example, the
attributes PRODUCT, Product, and product will look the same.

NOTE: This option is always off by default, and is recommended for
special situations only. The case-sensitivity of markup is usually
very important.

Attribute values delimited by whitespace (Tokenized strings)

NOTE: This option does not apply to XPath-based schemes which
necessarily process all markup as it is encountered. If you require
the recognition of tokenized values, consider using the
contains() function. See the FrameSLT User Guide for more
information and/or Matching and differentiating two basic
conditions on page 4-39 for an example.

The FrameMaker interface makes it convenient to manage multiple values on a single
attribute, separating individual values with a carriage return in the attribute editor and
the Structure View. For example, the following product attribute has three separate
values:

This convention is easily managed with a Strings-type attribute in an EDD and is
recognized by AXCM. However, in many applications (especially those dealing with
XML), multiple values are found on a single line, delimited with whitespace. For
example, the same “conditionalization” could appear as follows:

With this advanced option checked, AXCM will recognize the individual values in this
type of combined string (also called a tokenized string). That is, AXCM will recognize all
individual tokens separated by whitespace, such that the following sample elements all
appear the same to the plugin:

AXCM Plugin for FrameMaker® User Guide (v3.30)

Scheme Setup And Other Main Settings 51

When checked, this option applies to all attributes and values, and only applies to
tokenized values delimited by whitespace. Without this option checked, the default
behavior is to ignore individual tokens and consider whole strings only.

Processing all flows

By default, a scheme will process the main flow only, normally flow A. With this option
checked, however, all structured flows will be processed independently. This includes
flows in text frames and on the master and reference pages. Any unstructured flows are
ignored in either case.

Master attribute library

NOTE: The master attribute library is applicable to “classic” scheme
management only.

By selecting Main Settings > Attribute Library, you can define default attributes and
values to populate the drop-down dialog boxes in the scheme editor. For example,
when you add an attribute to a scheme, the drop-down dialog box will contain the
names of any attribute specified in this library. This list is a scheme editing convenience
only and has no effect on the coloring, filtering, or validating of content. It is provided
because the same attributes and values are typically reused between multiple
schemes, and spelling and case-sensitivity are very important.

NOTE: The scheme editor dialog boxes will allow you to type any values
you want. You are not restricted to the entries in the master
attribute list.

User Guide (v3.30) AXCM Plugin for FrameMaker®

52 Scheme Setup And Other Main Settings

Master colors list

By selecting Main Settings > Colors, you can define a set of default colors to appear
in the drop-down dialog box when adding a new rule to a coloring scheme. This feature
is provided as a convenience because the same colors are typically reused frequently,
and spelling and case-sensitivity are very important.

This list is intended to enhance the scheme editing process only. It has no effect on the
coloring feature of the plugin, and it has no inherent correlation with any templates or
color definitions. If you use it, you should simply populate it with the names of the colors
that appear in your templates, especially those that you intend to use in coloring
schemes. In the scheme editor, you can always type any color you want, and you are
never restricted to this list alone.

Migrating Sourcerer settings

This feature has been deprecated. If you have a large amount of data that requires
migration, please contact West Street.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 53

5: External Calls to
AXCM

Like many FrameMaker plugins, you can make external calls to AXCM to invoke certain
plugin activities, often for purposes of automation. Specifically, you can call this plugin
to:

• Set the active filter, coloring, and validation schemes (SetScheme on page 5-71)

• Get and set various options for filtering and other processing (GetParm on
page 5-62 and SetParm on page 5-65)

• Filter-check an element (FilterCheckElement on page 5-59)

• Filter a document or book (FilterFile on page 5-60)

• Restore a document or book from a source-file filter (RestoreFile on page 5-64)

• Color an element (ColorElement on page 5-56)

• Color a document or book (ColorFile on page 5-57)

• Validate an element (ValidateElement on page 5-73)

• Read the local settings file (ReadLocalSettings on page 5-63)

• Change the delimiter character for external calls (ChangeCallDelimiter on
page 5-55)

These functions are fully exposed through the FrameMaker API and allow you to
programmatically mimic the behavior of the plugin as used interactively through the
GUI.

How to send an external call to AXCM

To call AXCM, you can use one of three methods:

User Guide (v3.30) AXCM Plugin for FrameMaker®

54 External Calls to AXCM

• With the FDK F_ApiCallClient() function, from another API client If you are
working on another FDK client, you can use F_ApiCallClient() to call AXCM.
This function is part of the normal FDK library and does not require any changes to
your normal project settings. For more information on the function itself, see the
FDK Developer’s Reference provided by Adobe with the FDK.

• With FrameScript or ExtendScript (FM10 or later) FrameScript®, a scripting
tool by Finite Matters, Ltd®, has a comparable function for calling FDK clients,
CallClient. ExtendScript, which is a native feature included with FrameMaker,
can also call clients. When called from a script, AXCM behaves identically to a
regular API call.

• With FrameAC FrameAC by Mekon® (www.mekon.com) is a COM-based utility
that enables developers to use Visual Basic to control FrameMaker. FrameAC also
provides the ability to script calls to other API clients.

For any supported operation, you pass a string to AXCM which contains a command
and any applicable parameters, and AXCM sends back a numeric code indicating the
results. The syntax of these strings is the same for either API or scripting calls, and is
explained in detail in this document.

NOTE: The call descriptions and examples in this document are written
from an FDK/API perspective, using F_ApiCallClient(). If you
are using FrameScript or FrameAC, the basic call syntax will be the
same, sent using the mechanism supported by the respective tool.

General information on external calls

Before you attempt to call AXCM, note the following:

• Certain commands require that you specify a document or book, which can be done
by one of three methods. For more information, see Specifying document and book
arguments on page 5-55.

• The default delimiter string between arguments in a call to AXCM is three dashes
(---). In this document, the syntax descriptions of external calls use the default
delimiter, which you should adjust accordingly if you decide to change the delimiter
with ChangeCallDelimiter.

• Several calls to AXCM return zero (0) to indicate a command failure, consistent with
the behavior of other FDK functions. However, F_ApiCallClient() also returns zero if
it fails to communicate at all with the specified API client. If you aren’t sure whether
your calls are reaching AXCM, you can call Hello to verify that communications
are getting through.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 55

• With the exception of scheme categories and names, call string arguments are
generally not case-sensitive. For example, to set an active scheme, you can send
any case variation of the SetScheme command name, such as SETSCHEME or
SetScheme.

• To effectively use the external interface to AXCM, you should be familiar with the
functionality and workflow of the plugin through the GUI.

Specifying document and book arguments

When a document or book identifier is required, you may use any of the following three
methods:

• An object handle ID - The integer form of the F_ObjHandleT object ID for the file.

• A filename - A non-qualified filename, such as MyDocument.fm.

• A file path - A fully-qualified file path, such as:

C:\MyDocs\MyDocument.fm

With this method, you may substitute forward-slashes for backslashes. For
example:

C:/MyDocs/MyDocument.fm

In all cases, the file must be currently open. AXCM will not open any files.

Specifying Boolean arguments

When an argument requires a Boolean true or false, you can specify it as follows:

• For true, you can specify 1, true, or any word that begins with “t”, including just t.

• For false, you can specify 0, false, or any word that begins with “f” (yes, any
word), including just f.

Boolean arguments are not case-sensitive.

Call reference

This section details the external calls you can make to AXCM.

ChangeCallDelimiter

Changes the delimiter for external call arguments. The default upon startup is three
dashes (“---”).

User Guide (v3.30) AXCM Plugin for FrameMaker®

56 External Calls to AXCM

Syntax
F_ApiCallClient("FrameSLT", "ChangeCallDelimiterNewDelimiter");

NOTE: The new delimiter directly follows the ChangeCallDelimiter
command. Do not separate them with the old delimiter. Anything
following the command will be considered the new delimiter.

Returns

F_ApiCallClient() returns one of the following values:

ChangeCallDelimiter syntax example
F_ApiCallClient("AXCM", "ChangeCallDelimiter++++");

ColorElement

Colors an element according to the active coloring scheme. This command is not
supported for XPath-based schemes.

Syntax
 F_ApiCallClient("AXCM",
 "ColorElement---Document---ElemId---IncludeDescendants---DoWarnings");

where:

Value Meaning

1 Delimiter successfully changed.

101 Unrecognized command. Make sure you spelled “ChangeCallDelimiter”
correctly.

103 Incorrect number of arguments in the call string. Make sure you provided a new
delimiter after ChangeCallDelimiter.

Document Document that contains the element to be colored. For more
information on specifying this parameter, see Specifying
document and book arguments on page 5-55.

ElemId The F_ObjHandleT object ID of the element to color.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 57

Usage description

ColorElement evaluates the specified element against the active coloring scheme
and applies any formatting as applicable. The command requires that an active
coloring is scheme set, perhaps with SetScheme.

Returns

ColorFile

Colors a document or book according to the active coloring scheme.

IncludeDescendants (Boolean) Indicates whether to evaluate and color any
descendant elements. If set to False, descendant elements
may receive any coloring applied to the main element only.

For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-55.

DoWarnings (Boolean) Indicates whether to perform interactive user
prompting. If set to False, no message boxes are produced
under any conditions, including critical errors.

For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-55.

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

1 Coloring occurred successfully.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad document argument. See Specifying document and book arguments on
page 5-55.

105 Bad element ID.

106 Bad category and/or scheme name. This error will occur if an active coloring
scheme is not set before the command is run.

116 Coloring failed for an unknown reason.

117 An interactive user cancellation occurred.

120 The scheme is an XPath-based scheme, which is not supported for this
command.

User Guide (v3.30) AXCM Plugin for FrameMaker®

58 External Calls to AXCM

Syntax
F_ApiCallClient("AXCM", "ColorFile---File---DoWarnings");

where:

Usage description

ColorElement runs the active coloring scheme on the specified document or book.
The command requires that an active coloring scheme is set, perhaps with
SetScheme.

Returns

File Document or book to be colored. For more information on
specifying this parameter, see Specifying document and
book arguments on page 5-55.

NOTE: If you specify a book, only currently-open
chapter files will be processed. Closed book
components are ignored.

DoWarnings (Boolean) Indicates whether to perform interactive user
prompting. If set to False, no message boxes are produced
under any conditions, including critical errors.

For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-55.

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

1 Coloring occurred successfully.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad file argument. See Specifying document and book arguments on page 5-55.

106 Bad category and/or scheme name. This error will occur if an active coloring
scheme is not set before the command is run.

108 No structure found in main flow. This error only occurs if you are processing a
single document, and the “Process all flows” scheme option is turned off in the
active scheme.

116 Coloring failed for an unknown reason.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 59

FilterCheckElement

Checks the specified element against the active filter scheme and returns whether the
element should be “filtered out” or not. This command is not supported for XPath-based
schemes.

Syntax
F_ApiCallClient("AXCM", "FilterCheckElement---Document---ElemId");

where:

Usage description

FilterCheckElement evaluates a single element against the active filter scheme
and determines whether the element should be hidden, or in other words, filtered out. It
does not perform any filtering action itself, returning a flag only. This command requires
a valid, active filtering scheme, perhaps set with SetScheme.

NOTE: If you want AXCM to perform a whole file filter, including all the
functionality associated with an interactive GUI filtering action, use
FilterFile instead.

Returns

117 An interactive user cancellation occurred.

121 The scheme is an XPath-based scheme, but an XPath parser could not be found.
This is typically an installation problem. See the installation documentation for
more information.

Value Meaning

Document Document that contains the element to be checked. For
more information on specifying this parameter, see
Specifying document and book arguments on page 5-55.

ElemId The F_ObjHandleT object ID of the element to check.

Value Meaning

0 Element should be preserved.

NOTE: This value may also be returned if the currently-active filter scheme
is not valid. Be sure to call SetScheme successfully before running this
command the first time.

1 Element should be filtered out.

User Guide (v3.30) AXCM Plugin for FrameMaker®

60 External Calls to AXCM

FilterFile

Filters a document or book according to the active filtering scheme and current filter
parameters.

Syntax
F_ApiCallClient("AXCM", "FilterFile---File---DoWarnings");

where:

Usage description

FilterFile filters an entire document or book and returns the object ID of the filtered
file. The filter occurs in accordance with the current filter settings which can be set
beforehand with SetParm and SetScheme. The filter scheme and other settings can
have a significant impact on how the filter behaves and you should be sure that you
understand and set them properly.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad document argument. See Specifying document and book arguments on
page 5-55.

105 Bad element ID.

106 Bad category and/or scheme name. This error will occur if an active filtering
scheme is not set before the command is run.

120 The scheme is an XPath-based scheme, which is not supported for this
command.

Value Meaning

File Document or book to be filtered. For more information on
specifying this parameter, see Specifying document and
book arguments on page 5-55.

NOTE: If you specify a book, all book components
must be currently open.

DoWarnings (Boolean) Indicates whether to perform interactive user
prompting. If set to False, no message boxes are produced
under any conditions, including critical errors.

NOTE: Interactive prompting does not include the Filter
dialog box.

For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-55.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 61

If you filter a single document successfully, the command returns the ID of the filtered
document. In the case of a duplicate-file filter, this is the ID of the new, filtered file. For a
source-file filter, it returns the same ID that you originally sent (if you sent the file
parameter in ID form).

If you filter a book, the behavior is the same. Note, however, that a duplicate-file book
filter requires a target folder to receive the duplicated book. It is critically important that
you set this parameter before running the filter and make absolutely sure that you have
done it correctly. The filter will overwrite any files it finds in the target folder. You can set
the target folder path with SetParm, along with other important filter settings.

When running a source-file filter, AXCM always removes all conditional text from a file
first, unless you are using the “Source_NR” option. For no-restore source-file filters,
you can also choose to control the show/hide status of the hidden condition yourself, in
the case where you do not want AXCM to automatically hide it after the filter. By
controlling it yourself (that is, hiding it yourself after running all filters), you can save
processing time. For more information on setting up for a no-restore filter, see
SetParm.

In the unlikely event that a book filter fails in the middle of processing, you should
capture this error and close all affected files without saving changes. A failure in the
middle of a book filter will leave your files in an unpredictable state.

For more information on filter types, see Filter types - Source versus duplicate file on
page 3-17. For more information on other filter options, see Launching a filter on
page 3-16.

NOTE: Following a source-file filter, you can restore the document or book
with RestoreFile.

Returns

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad file argument. See Specifying document and book arguments on
page 5-55.

106 Bad category and/or scheme name. This error will occur if an active filtering
scheme is not set before the command is run.

111 An interactive user cancellation occurred, or some other unknown filter error
occurred.

User Guide (v3.30) AXCM Plugin for FrameMaker®

62 External Calls to AXCM

GetParm

Gets a parameter related to AXCM, such as the plugin version.

Syntax
F_ApiCallClient("AXCM", "SetParm---Parm");

where:

Usage description

The following table lists the parameters supported by this command:

112 The file could not be duplicated, for an unknown reason. This error is only
applicable to duplicate-file filters.

113 One or more book components are not open, applicable only to book filters.

114 The specified path for the filtered book is the same as the book to be filtered.
The filter must abort because it would otherwise overwrite the original book
with the filtered book, permanently deleting content. This error is only
applicable to duplicate-file book filters. For more information on setting this
parameter, see SetParm

115 The specified path for the filtered book is inaccessible or does not exist. This
error is only applicable to duplicate-file book filters. For more information on
setting this parameter, see SetParm.

121 The scheme is an XPath-based scheme, but an XPath parser could not be
found. This is typically an installation problem. See the installation
documentation for more information.

Any number
over 1000

An integer form of the object ID for the filtered file, indicating a successful
filter.

Value Meaning

Parm Parameter to retrieve. For a list of parameters, see Usage
description on page 5-62.

Parameter Description

AXCMVersionMajor Major version number of AXCM; for example, the “3” in
version 3.13.

AXCMVersionMinor Major version number of AXCM; for example, the “13” in
version 3.13.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 63

Returns

Hello

Tests whether AXCM is initialized and receiving external calls.

Syntax
F_ApiCallClient("AXCM", "Hello");

Returns

ReadLocalSettings

Reads settings from the local settings file, similar to selecting AXCM > Read Local
Settings From Settings File in the interface. It may be useful for the restoration of
normal settings after changing settings through the API.

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

109 Unrecognized parameter.

122 A general unknown error occurred.

Any other
number

The parameter value.

Value Meaning

0 AXCM is not initialized and/or communication failed. Possible causes include:

• AXCM is not running at all. Check the FrameMaker interface for an AXCM
menu.

• Your call uses a syntax that differs from the plugin name in the maker.ini
file. In the AXCM installation instructions, the following line is to be entered
into maker.ini:

AXCM=Standard,AXCM,WestStreet\AXCM.dll,structured

Whatever string you use to call AXCM (as the first argument of
F_ApiCallClient() must match the name assigned there.

1 AXCM is ready.

User Guide (v3.30) AXCM Plugin for FrameMaker®

64 External Calls to AXCM

Syntax
F_ApiCallClient("AXCM", "ReadLocalSettings---DoWarnings");

where:

Returns

RestoreFile

Restores a document or book following a source-file filter.

Syntax
F_ApiCallClient("AXCM", "RestoreFile---File");

where:

DoWarnings (Boolean) Indicates whether to perform interactive user
prompting. If set to False, no message boxes are produced
under any conditions, including critical errors.

For more information on setting Boolean arguments, see
Specifying Boolean arguments on page 5-55.

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

1 Settings read completed normally. This value does not indicate that any
particular setting was or was not read properly, or that all settings are
configured correctly. It only means that the settings file was located and
appeared to contain at least one setting. If any settings were missing from the
file, system defaults were applied.

101 Unrecognized command. Check the syntax of the command itself.

115 The local settings file could not be found or was found to be empty.

File Document or book to be restored. For more information on
specifying this parameter, see Specifying document and
book arguments on page 5-55.

NOTE: If you specify a book, only currently-open book
components are restored. AXCM does not open
any files.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 65

Usage description

RestoreFile removes the Hidden condition from a document or book as applied
during a source-file filter. This command is not applicable if you use duplicate-file filters.
For more information, see Restoring a document or book on page 3-19.

Returns

SetParm

Sets a parameter that affects AXCM processing, such as filter parameters.

Syntax
F_ApiCallClient("AXCM", "SetParm---Parm---Value");

where:

Usage description

SetParm is a means to set important parameters via external calls. These parameters
would typically be set by a user in a dialog box during an interactive session, and
represent important settings that can significantly affect how AXCM processes content.

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

1 Restoration occurred normally.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad file argument. See Specifying document and book arguments on
page 5-55.

Parm

and

Value

Parameter and value to set. For a list of parameters and
valid values, see Usage description on page 5-65.

User Guide (v3.30) AXCM Plugin for FrameMaker®

66 External Calls to AXCM

The following table lists the parameters supported by this command and the valid
values for each:

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 67

User Guide (v3.30) AXCM Plugin for FrameMaker®

68 External Calls to AXCM

Parameter Description Valid values

Gen_MainSettingsPath Path to the master copy
of the main settings file,
normally specified in the
local settings file. When
the location is (re)set this
way, the file is retrieved
and stored locally as if
you browsed to it and
selected it manually. All
future requests for
scheme data will be
based on the new file.

Note that this command
does not change the
setting in the local
settings file; that is, the
change is temporary for
the current FrameMaker
session only. The original
path is restored the next
time local settings are
read, which you can do
through the API with
ReadLocalSettings.

See Specifying document
and book arguments on
page 5-55.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 69

Filter_Type Filter type, normally set in
the Filter dialog box. See
Launching a filter on
page 3-16.

• D or Duplicate

• S or Source - Source-file
filtering with restoration

• S_NR or Source_NR -
Source-file filtering with
no restoration. This is a
special setting that is
identical to Source,
except that the plugin
does not remove any
conditional text from the
file before filtering. It is
designed for specialized
usage where multiple
source-file filters must be
run on a single file to
reach a desired result.
For more information,
see Filter types - Source
versus duplicate file on
page 3-17.

Note that Duplicate
filtering has no “NR”
counterpart, because you
can run multiple
duplicate-file filters on the
same file by running
subsequent filters on the
duplicates.

Filter_SaveFirst Option to save all files
prior to a filter action,
normally set in the Filter
dialog box. See
Launching a filter on
page 3-16.

Boolean true/false. See
Specifying Boolean
arguments on page 5-55

Filter_RemoveOverrides Option to remove format
overrides following a filter
action, normally set in the
Filter dialog box. See
Launching a filter on
page 3-16.

Boolean true/false. See
Specifying Boolean
arguments on page 5-55

Parameter Description Valid values

User Guide (v3.30) AXCM Plugin for FrameMaker®

70 External Calls to AXCM

Filter_ShowBeforeNRFilt Controls whether AXCM
shows all native
conditions before running
a no-restore source-file
filter. Normally, a filter
runs cleaner when all
conditions are shown.

Boolean true/false. See
Specifying Boolean
arguments on page 5-55

Filter_HideAfterNRFilt Controls whether AXCM
automatically hides the
“hidden” condition
following a no-restore
source-file filter. If you
have many filters to run in
sequence, it may save
processing time to
manage the state of the
condition yourself; that is,
hide the condition
yourself once all filters
are applied. Note that you
disable this setting; that
is, prevent AXCM from
automatically hiding the
condition, the effects of
your filter(s) will not be
visible until you hide the
condition.

• ALWAYS

• PROMPT_FIRST

• NEVER

Filter_Path Target path for a
duplicate-file book filter,
normally set graphically
in the Filter dialog box.
For more information, see
Launching a filter on
page 3-16.

NOTE: This
parameter must
be set before
you can run a
duplicate-file
book filter

A valid folder path. Note the
following:

• You can optionally use
forward slashes instead
of back slashes. For
example:

C:/MyDocs/

• You MUST include the
trailing slash. See the
example above.

• You MUST NOT include
the target file name.
Specify the folder path
only.

• You should be VERY
CAREFUL to set this
property correctly. A
book filter will overwrite
files in the target folder.

Parameter Description Valid values

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 71

NOTE: Once a parameter is set, it remains set for the duration of the
session unless changed.

Returns

SetScheme

Sets the active coloring, filter, or validation scheme.

Syntax
F_ApiCallClient("AXCM",

 "SetScheme---SchemeType---Category/File---Scheme");

Val_Rule1Active

Val_Rule2Active

Val_Rule3Active

Val_Rule4Active

Specifies whether the
respective validation rule
is active, normally set in
the local settings file. See
Local settings on
page 2-9.

Boolean true/false. See
Specifying Boolean
arguments on page 5-55

Val_ApplyStrikethrough Specifies whether
validation should apply
strikethrough text,
normally set in the local
settings file. See Local
settings on page 2-9.

Boolean true/false. See
Specifying Boolean
arguments on page 5-55

Parameter Description Valid values

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

1 Parameter set successfully.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

109 Unrecognized parameter.

110 Invalid value.

115 Bad file path or ID.

122 A general unknown error occurred. If you were attempting to set a file path,
the file may be non-existent, improperly configured, currently in use, or
corrupt.

User Guide (v3.30) AXCM Plugin for FrameMaker®

72 External Calls to AXCM

where:

Usage description

SetActiveScheme sets the active scheme prior to a coloring, filtering, or validation
action. It reads the data from your local copy of the main settings file. Once a scheme is
set, it remains set until you change it.

Returns

SchemeType Scheme type, one of:

• F or Filter

• C or Coloring

• V or Validation

Category/File Case-sensitive scheme category

-or-

The ID, filename, or path of an open configuration file (see
Specifying document and book arguments on page 5-55).

If the argument you send can be correlated with an open
document, the command attempts to read the scheme from
that document in the special “configuration file” tabular
format. Otherwise, it attempts to read it from the
currently-configured main settings document. In no case will
AXCM open any files that are closed. Note that you can
change the current main settings document with SetParm.

For more information on tabular scheme data, see About
“configuration files” on page 2-12.

Scheme Case-sensitive scheme name.

Value Meaning

0 Communication with AXCM appears to have failed. Use Hello to test
connectivity.

1 Parameter set successfully.

101 Unrecognized command. Check the syntax of the command itself.

102 Bad scheme type argument.

103 Incorrect number of arguments sent with command.

106 Unrecognized category and/or scheme.

107 Main settings file critical error, possibly missing or corrupt.

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 73

ValidateElement

Validates the specified element against the active validation scheme and returns the
first rule violated, if any.

Syntax
F_ApiCallClient("AXCM", "ValidateElement---Document---ElemId");

where:

Usage description

ValidateElement evaluates a single element against the active validation scheme
and returns an integer representing the first rule found that was violated, if any. It
operates using the currently-active validation rules and validation options, all of which
can be set with SetParm. It does not create any reports.

Note that this command only returns a single integer and therefore can only return a
single rule number. An element, however, can violate more than one rule at once. This
command will simply return the first rule violation it finds, but you should be aware that
more violations may exist.

Returns

Document Document that contains the element to be checked. For
more information on specifying this parameter, see
Specifying document and book arguments on page 5-55.

ElemId The F_ObjHandleT object ID of the element to check.

Value Meaning

0 Element’s attributes are valid.

1 - 4 Number of the validation rule that the element violated. See Attribute validation
on page 3-22.

101 Unrecognized command. Check the syntax of the command itself.

103 Incorrect number of arguments sent with command.

104 Bad document argument. See Specifying document and book arguments on
page 5-55.

105 Bad element ID.

106 Bad category and/or scheme name. This error will occur if an active filtering
scheme is not set before the command is run.

119 An unknown error occurred during validation.

User Guide (v3.30) AXCM Plugin for FrameMaker®

74 External Calls to AXCM

Detailed example—Calling AXCM (FDK)

The following example contains a C language code sample for use with the FDK. It is a
self-contained function that has been designed for and tested against the
External_Calls_Sample.fm file, found in your AXCM_SampleFiles subfolder.
For proper operation, this function relies on External_Calls_Sample.fm to be in its
original state, and the external call schemes to be unaltered in the Samples category.
This category is found in the default main settings file provided with the AXCM
installation.

With External_Calls_Sample.fm active, this function does the following:

1. Sets the active coloring scheme

2. Colors the original document

3. Sets up and performs a duplicate-file filter on the original document

4. Colors the new, filtered duplicate

5. Closes the duplicate

6. Sets up and runs a source-file filter on the original document

7. Restores the original and removes coloring

8. Retrieves the ID of the first Section element, colors it, then filter checks it

9. Retrieves the ID of the second Section element, colors it, then filter checks it

NOTE: You can also find an electronic copy of this function in the
External_Calls_Sample.c file which installs into the
AXCM_SampleFiles subfolder, under WestStreet.

VoidT AXCM_Sample()
{
 F_ObjHandleT docId,
 docId2,
 flowId,
 elemId;
 UCharT msg[512];

 IntT returnVal;

 UIntT i;

 //Let's store the ID of the active document, which MUST BE the
 //External_Calls_Sample.fm file for this whole function to work
 docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);
 if(!docId) return;

 //Message
 F_ApiAlert("Preparing to color. Click OK to set the active scheme...",
 FF_ALERT_CONTINUE_WARN);

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 75

 //Set the active coloring scheme. Let's do a bogus scheme first, just as
 //an example of a call failure
 returnVal = F_ApiCallClient("AXCM", "SetScheme---C---BogusCategory---BogusScheme");

 //send a message about the failure. Should indicate a return value of 106
 F_Sprintf(msg, "The command to set the scheme failed, because the category\
 and scheme name were bogus. The call returned the following integer: %d\n\n\
 Click OK to try again.",
 returnVal);

 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 //Set the active coloring scheme for real this time
 returnVal = F_ApiCallClient("AXCM", "SetScheme---C---Samples---External_Call_Sample");

 //Evaluate the response. We're going to back out if something went wrong.
 if(returnVal == True)
 F_ApiAlert("The scheme was set successfully. Click OK to launch the coloring.",
 FF_ALERT_CONTINUE_WARN);

 else
 {
 F_Sprintf(msg, "The command failed, returning the following integer: %d\n\n\
 Your main settings do not include the factory samples necessary for this test.\
 The test will abort.", returnVal);

 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 return;
 }

 //Launch the coloring.
 returnVal = F_ApiCallClient("AXCM", "ColorFile---External_Calls_Sample.fm---False");

 //Let's make sure it worked, before continuing. If you forgot to open the file
 //beforehand, this would have caused it to fail.
 if(returnVal == True)
 F_ApiAlert("The file was successfully colored. Click OK to launch the filtering.",
 FF_ALERT_CONTINUE_WARN);

 else
 {
 F_Sprintf(msg, "The coloring failed. Did you forget to open the file?",
 returnVal);

 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 return;
 }

 //Set the filtering scheme
 returnVal = F_ApiCallClient("AXCM", "SetScheme---F---Samples---External_Call_Sample");

 //Set the filter type to duplicate file
 returnVal = F_ApiCallClient("AXCM", "SetParm---Filter_Type---D");

 //Set the "save files first" option to off
 returnVal = F_ApiCallClient("AXCM", "SetParm---Filter_SaveFirst---0");

User Guide (v3.30) AXCM Plugin for FrameMaker®

76 External Calls to AXCM

 //Filter the document
 returnVal = F_ApiCallClient("AXCM", "FilterFile---External_Calls_Sample.fm---False");

 //If it filtered successfully, we should have received an object ID back of the
 //filtered duplicate. Just as a sample of what we can do with it, let's color the
 //filtered duplicate now.

 //Let's save the document ID first.
 if(returnVal > 1000)
 {
 docId2 = (F_ObjHandleT)returnVal;
 F_ApiAlert("The file was successfully filtered. Click OK to color the new file.",
 FF_ALERT_CONTINUE_WARN);
 }
 else
 {
 F_ApiAlert("Something went wrong. Aborting the test.", FF_ALERT_CONTINUE_WARN);
 return;
 }

 F_Sprintf(msg, "ColorFile---%d---False", docId2);
 returnVal = F_ApiCallClient("AXCM", msg);

 //Get ready to close the filtered duplicate
 F_ApiAlert("The duplicate file was colored. Click OK to close it.",
 FF_ALERT_CONTINUE_WARN);

 F_ApiClose(docId2, FF_CLOSE_MODIFIED);

 //Now let's do a source-file filter

 F_ApiAlert("The duplicate file was closed. Now click OK to perform a\
 source-file filter on the original document.", FF_ALERT_CONTINUE_WARN);

 //Set the filter type to source file
 returnVal = F_ApiCallClient("AXCM", "SetParm---Filter_Type---S");

 //Filter the document
 returnVal = F_ApiCallClient("AXCM", "FilterFile---External_Calls_Sample.fm---False");

 //Report
 F_ApiAlert("The file was filtered. Click OK to restore it.",
 FF_ALERT_CONTINUE_WARN);

 //Restore the filtered file.
 returnVal = F_ApiCallClient("AXCM", "RestoreFile---External_Calls_Sample.fm");

 //and let's remove the coloring
 F_ApiSimpleImportElementDefs(docId, docId,
 FF_IED_REMOVE_OVERRIDES | FF_IED_REMOVE_BOOK_INFO);

 //Just for kicks, let's do some element-level functions.

 //Let's get the ID of the first Section element,
 //the one tagged for Product A.
 flowId = F_ApiGetId(FV_SessionId, docId, FP_MainFlowInDoc);
 elemId = F_ApiGetId(docId, flowId, FP_HighestLevelElement);

AXCM Plugin for FrameMaker® User Guide (v3.30)

External Calls to AXCM 77

 elemId = F_ApiGetId(docId, elemId, FP_FirstChildElement);
 for(i = 0; i < 5; i++)
 elemId = F_ApiGetId(docId, elemId, FP_NextSiblingElement);

 //Prompt
 F_ApiAlert("The code has retrieved the ID of the first Section element.\
 Click OK to color it.", FF_ALERT_CONTINUE_WARN);

 //Color the first Section element
 F_Sprintf(msg, "ColorElement---%d---%d---True---False", docId, elemId);
 returnVal = F_ApiCallClient("AXCM", msg);

 //Prompt
 F_ApiAlert("The element has been colored. Click OK to filter check it.",
 FF_ALERT_CONTINUE_WARN);

 //Filter-check the first Section element. It should return a value of
 //zero, meaning that the element should not be filtered out. In other
 //words, the active coloring scheme allows it to stay.
 F_Sprintf(msg, "FilterCheckElement---%d---%d", docId, elemId);
 returnVal = F_ApiCallClient("AXCM", msg);

 F_Sprintf(msg, "The filter check returned: %d.\n\n\
0 = Keep\n1 = Filter out", returnVal);
 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 //Do the same thing for the second Section element. This one should
 //return a flag to filter it out, like it was filtered out when we
 //ran the full document filter earlier.

 //Get the ID of the second Section element
 elemId = F_ApiGetId(docId, elemId, FP_NextSiblingElement);

 //Prompt
 F_ApiAlert("The code has retrieved the ID of the second Section element.\
 Click OK to color it.", FF_ALERT_CONTINUE_WARN);

 //Color the second Section element
 F_Sprintf(msg, "ColorElement---%d---%d---True---False", docId, elemId);
 returnVal = F_ApiCallClient("AXCM", msg);

 //Prompt
 F_ApiAlert("The element has been colored. Click OK to filter check it.",
 FF_ALERT_CONTINUE_WARN);

 //Filter-check the second Section element. It should return a value of
 //one, meaning that the element should be filtered out. In other words,
 //it is content to be hidden.
 F_Sprintf(msg, "FilterCheckElement---%d---%d", docId, elemId);
 returnVal = F_ApiCallClient("AXCM", msg);

 F_Sprintf(msg, "The filter check returned: %d.\n\n\
0 = Keep\n1 = Filter out", returnVal);
 F_ApiAlert(msg, FF_ALERT_CONTINUE_WARN);

 F_ApiAlert("All done!", FF_ALERT_CONTINUE_WARN);
}

User Guide (v3.30) AXCM Plugin for FrameMaker®

78 External Calls to AXCM

	1: Introduction
	Advantages over native conditional text
	What the plugin does
	Requirements to use the AXCM plugin
	Important notes on later versions of FrameMaker
	About the name
	Translation of the AXCM interface
	Selecting a language
	Language configuration
	Additional language utilities

	Trademarks and licensing information

	2: Getting Started
	Definitions of terms
	Important note on native conditional text
	Specifying attributes
	Conditionalizing whole chapters
	Local settings
	About the main settings file
	Main settings file location
	About the main settings document structure

	Book processing limitations
	About “configuration files”
	Where settings files are stored
	About scheme categories

	3: Filtering, Coloring, and Validating
	Filtering
	Launching a filter
	Filter types - Source versus duplicate file
	How filtering works
	Restoring a document or book
	Conditionalizing (and filtering out) entire files
	Creating and editing schemes from the filter dialog

	Coloring
	Launching a coloring action
	Removing coloring

	Attribute validation
	Automatic validation
	Validation rule #1 - Simple syntax
	Validation rule #2 - Ancestor element lacking subordinate condition
	Rule #3 - Unspecified descendants
	Rule #4 - Empty attribute not allowed

	4: Scheme Setup And Other Main Settings
	General information about schemes and categories
	About “classic” vs. XPath schemes
	Important notes about XPath-based schemes
	General scheme editing procedures - “Classic” schemes
	General scheme editing procedures - XPath-based schemes
	About the XPath expression tester

	Coloring schemes
	Basic coloring scheme behavior
	Where the colors come from
	Coloring scheme details - “Classic” schemes
	Attribute/value matching criteria
	Coloring rule order
	<no value> and <any value> in a coloring scheme
	Other coloring scheme options and features

	Coloring scheme details - XPath-based schemes
	Matching a single, basic condition
	Matching and differentiating two basic conditions
	Coloring everything except a certain condition

	Filter schemes
	General filter scheme matching behavior - “Classic” schemes
	General filter scheme matching behavior - XPath-based schemes
	<no value> and <any value> in “classic” schemes
	Filtering out elements by type, using unique attribute names

	Validation schemes
	Advanced scheme options
	Considering EDD-applied defaults
	Ignoring case-sensitivity
	Attribute values delimited by whitespace (Tokenized strings)
	Processing all flows

	Master attribute library
	Master colors list
	Migrating Sourcerer settings

	5: External Calls to AXCM
	How to send an external call to AXCM
	General information on external calls
	Specifying document and book arguments
	Specifying Boolean arguments

	Call reference
	ChangeCallDelimiter
	Syntax
	Returns
	ChangeCallDelimiter syntax example

	ColorElement
	Syntax
	Usage description
	Returns

	ColorFile
	Syntax
	Usage description
	Returns

	FilterCheckElement
	Syntax
	Usage description
	Returns

	FilterFile
	Syntax
	Usage description
	Returns

	GetParm
	Syntax
	Usage description
	Returns

	Hello
	Syntax
	Returns

	ReadLocalSettings
	Syntax
	Returns

	RestoreFile
	Syntax
	Usage description
	Returns

	SetParm
	Syntax
	Usage description
	Returns

	SetScheme
	Syntax
	Usage description
	Returns

	ValidateElement
	Syntax
	Usage description
	Returns

	Detailed example—Calling AXCM (FDK)

