
FrameSLT 3.0 13

Chapter 2
About FrameSLT XPath

FrameSLT supports a subset of the W3C XPath standard. Supported components should behave
exactly to standard. Use of non-supported components will likely cause parsing errors or
unexpected query results.

To use FrameSLT effectively, you must have a good working knowledge of XPath. You should
review this information thoroughly before using FrameSLT, especially the details on which XPath
components are supported and which are not. Nearly all FrameSLT functions rely on XPath to
navigate the FrameMaker structure tree.

Expansion of the FrameSLT-supported XPath is dependent on the needs of users like you. If you
have a need for an XPath component that is currently not supported, we’d like to hear from you at
info@weststreetconsulting.com.

About XPath
The XPath specification, defined by the W3C Consortium, allows querying and navigation within
an XML-style structure tree. It is sometimes considered a simple language in itself and is
frequently used during XML transformations to query source documents for content. Unlike a
“linear” search, XPath allows you to find elements and attributes under very specific conditions,
including considerations of structural hierarchy, positioning, and node content.

XPath is ideal for navigating a FrameMaker structure tree, because the markup of such a tree is
very much analogous to XML markup. Without a language such as XPath, you would be limited to
basic name and content searches provided by the standard FrameMaker Find tool.

There are a wealth of resources available for learning XPath, including the W3C website at
www.w3.org and free tutorials at websites such as www.w3schools.com. Because so many
options are available, this document does not attempt to reproduce a complete XPath reference
here. However, you can get some beginners tips with “XPath quick primer” on page 13. And, you
can see plenty of samples in “FrameSLT XPath examples” on page 27.

XPath quick primer
XPath is a special syntax designed for the express purpose of walking through a structure tree and
finding very specific instances of elements, attributes, and other “nodes.” It is reasonably simple to
understand once you get started.

A node-matching expression is always a series of “axes” and “node tests.” In essence, an axis tells
which way to go, and the node test tells what to look for when you get there. For example, consider
the following simple XPath:

child::Body

This expression says literally, “start at the context node (like an element), look to its children, and
find any Body elements.” Consider the following structure tree:

http://www.w3.org
http://www.w3schools.com

Chapter 2 About FrameSLT XPath

14 FrameSLT 3.0

If the context element were the Section element, that XPath would find its three Body children. If
the context were any other element, nothing would be found. In the FrameSLT Node Wizard, the
currently selected element becomes the default context node. However, the selected element may
not be relevant, if the first axis is a “go-to-root” axis, as explained in the next paragraph.

An important aspect of XPath is the first axis. In the previous example, the first axis (and only axis)
is child:: (go-to-child). So, a starting context must be manually provided (i.e., for the Node
Wizard, the currently-selected element.) However, in many cases, especially with FrameSLT, you
may find yourself using XPath that begins with the special “go-to-root” axis, indicated by a forward
slash (/). This axis instructs the parser to begin at the root of the structure tree, using it as the initial
context. With this axis, the context always starts at the root, and the currently-selected element is
irrelevant.

As an example, the following XPath will find the highest-level element, HLE:
/child::HLE

It is very important to note that the forward slash does not set the HLE as the context... the context
is actually “above” the HLE, at the true “root.” For example, the following XPath will find nothing,
because the only child of the root is the highest level element, HLE:

/child::Section

However, the following expressions will find the Section element:
/child::HLE/child::Section

/descendant::Section

The descendant axis works because the Section is a descendant of the root. In fact, you can find
any element by name with that particular expression. Note that the forward slash only means
“go-to-root” if it is at the beginning. Otherwise, it is the delimiter between axis/node test
components.

XPath also allows “predicates,” which are subexpressions in brackets used for testing something.
You can use any axis in a predicate, and nest predicates within predicates as needed. For
example, the following XPath will find the Section element again, because the predicate tests for
the presence of an Output attribute:

/descendant::Section[attribute::Output]

In this case, the predicate doesn’t care what the value of Output is... only that the attribute exists.
However, you can test values too, for example:

/descendant::Section[attribute::Platform = "Unix"]

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 15

That expression will find the Section, because the node test (Section) matches, and the
predicate is satisfied. However, the following expression will find nothing, because the predicate is
never satisfied:

/descendant::Section[attribute::Platform = "PDF"]

Once this begins to makes sense, take a look at the examples in “FrameSLT XPath examples” on
page 27. Before long, you should be able to master XPath, and see just how versatile and
powerful it is as a structure query tool.

Nodes vs. elements—Terminology
When discussing XML and XPath, the word “node” is used frequently to describe a generic
location type within a structure tree. A node can be a place such as an element, an attribute, or a
namespace... essentially any definable place in the structure tree that a query can step to. As you
study XPath elsewhere, you will find this word used much more frequently than “element” and
“attribute.”

The FrameMaker interface and documentation, though, do not use this word, referring to locations
specifically as elements and attributes. Therefore, the FrameSLT interface and documentation
attempt to maintain this convention. However, when working with XPath, the word “node” is
sometimes impossible to avoid, especially when the type of node is not specific. Therefore, an
effort has been made in this document to adhere to the following terminology conventions:

• Node When used alone, this word generally means “an element or attribute.”

• Element node A FrameMaker element

• Attribute node A FrameMaker attribute

In reality, the term “node” refers more generally to any point within a branching structure where
branches begin, terminate, or propagate. For the purposes of this document, however, an
association with elements and attributes should be sufficient.

Supported axes
FrameSLT supports all standard XPath axes except namespace::. Using the “wildcard” character
to indicate “any non-text node,” the following examples illustrate supported axes:

• attribute::*—Matches all attributes of the context node.

• self::*—Matches the context node.

• child::*—Matches all children of the context node.

• descendant::*—Matches all descendants (children, grandchildren, etc.) of the context
node.

• descendant-or-self::*—Matches all descendants (children, grandchildren, etc.) of the
context node, including the context node.

• parent::*—Matches the parent of the context node.

• ancestor::*—Matches all ancestors (parents, grandparents, etc.) of the context node

• ancestor-or-self::*—Matches all ancestors (parents, grandparents, etc.) of the context
node, including the context node.

• preceding::*—Matches all preceding sibling nodes and all descendants of them, in
document order. For example:

Chapter 2 About FrameSLT XPath

16 FrameSLT 3.0

• preceding-sibling::*—Matches all preceding sibling nodes only, and excludes
descendants, in document order. For example:

• following::*—Matches all following sibling nodes and all descendants of them, in
document order. For example:

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 17

• following-sibling::*—Matches all following sibling nodes only, and excludes
descendants, in document order. For example:

Special “fmprop” axis
FrameSLT implements a non-standard fmprop axis for querying FrameMaker-specific object
properties. The notation is similar to standard W3C-defined axes, but rather than indicating
movement towards a node in the structure tree, it directs the retrieval of some property associated
with the current element node (that is, the context node).

As an example, the following expression will match all elements that have the “Body” paragraph
format applied to the underlying paragraph, or the first underlying paragraph if the element wraps
multiple paragraphs:

//*[fmprop::PgfTag="Body"]

Chapter 2 About FrameSLT XPath

18 FrameSLT 3.0

...where PgfTag is the specific notation that indicates a paragraph tag query. As another example,
assuming that Graphic is a graphic element, the following expression matches all Graphic
elements whose underlying anchored frame contains a referenced PNG file:

//Graphic[contains(fmprop::ImportObFile, ".png")]

Note that this evaluation would be case-sensitive, so a file with a .PNG extension would not make
a match, unless the non-standard contains-ci() function were used instead. For more
information, see “Supported functions” on page 23.

Currently, a very small subset of FrameMaker properties is supported by the fmprop axis, as
described in the following table. There are many hundreds of potential properties available for
evaluation, so it is not feasible to implement all of them at once. However, new properties will be
added upon request. If you have a need to query a certain type of property, please contact us and
we may be able to issue you a patch.

Additionally, note the following:

• The syntax of these properties follows the MIF tag format.

• Most of these properties can also be set using Node Wizard scripts.

fmprop property What is retrieved

ImportObFile Full path of each imported (referenced) file in the underlying anchored
frame. If the test matches a single file, the predicate is considered
satisfied. This property is relevant to graphic elements only. Example:

//Graphic[contains-ci(fmprop::ImportObFile, ".png")]

PgfTag Paragraph tag assigned to the span of text that the element wraps.
Example:

//*[fmprop::PgfTag="Body"]

TblTag Table format tag of the current table, only applicable for table
component elements. Any elements that are not table components are
automatically disqualified by this test. Do not use this property to test
paragraph container elements inside table cells; rather, use the
ancestor axis to test the ancestor cell, row, or table instead.
Example:

//Table[fmprop::TblTag="Ruling"]

In the previous example, if Table elements are not table components,
the expression will never match anything, regardless of the text within
the quotation marks:

FChangeBar Change bar status, either “true” or “false”. It can be used to find
elements whose first paragraph (or parent paragraph, for text-range
elements) is marked with a change bar. This setting is Boolean in
nature and is only applicable with the “true” and “false” arguments.
Examples:

//p[fmprop::FChangeBar="true"]

//title[fmprop::FChangeBar="false"]

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 19

Special book- and file-related axes
FrameSLT implements the following non-standard axes that allow a query to traverse from
documents to books and vice-versa, and directly from one file to another. For example, if you want
to perform operations on a whole book using the Node Wizard or Node Wizard scripts, you would
need to use one or more of these axes.

Note: The behavior of these axes can be difficult to understand. However, they are very
important for advanced FrameSLT usage. If you need assistance with expression
syntax, please contact West Street. For extended examples, see “Cross-book and

XRefName

XRefSrcText

XRefSrcFile

Cross-reference-related properties of the underlying cross-reference
object, only applicable for cross-reference elements. Any elements
that are not cross-references are automatically disqualified by these
tests. Further descriptions are as follows:

• XRefName - The cross-reference format.

• XRefSrcText - The reference ID; that is, the value of the
“IDReference” attribute of cross-reference element.

• XRefSrcFile - The source file that contains the destination of
the cross-reference. If the cross-reference is internal to the
document, the query returns an empty string.

The following example matches all xref elements that use the
“Heading on page” format and have destinations within the current
document:

//xref[fmprop::XRefName="Heading on page" and
fmprop::XRefSrcFile=""]

The following example matches all xref elements whose destination
is located in the external file “somefile.fm”:

//xref[contains(fmprop::XRefSrcFile,"somefile.fm")]

In both examples, if the xref element is not a cross-reference
element, the expressions would never match anything, regardless of
the text within the quoted strings.

MTypeName

MText

Marker-related properties of the underlying marker object, only
applicable for marker elements. Any elements that are not markers
are automatically disqualified by these tests. Further descriptions are
as follows:

• MTypeName - The marker type

• MText - The marker text

The following example matches all IndexMarker elements that use
the “Index” type and contain the text “XPath”:

//IndexMarker[fmprop::MTypeName="Index" and
contains(fmprop::MText,"XPath")]

In this example, if the IndexMarker element is not a marker element,
the expression would never match anything, regardless of the text
within the quoted strings.

fmprop property What is retrieved

Chapter 2 About FrameSLT XPath

20 FrameSLT 3.0

cross-file queries” on page 30.

Axis Behavior

fmbook Matches:

• The highest-level element (HLE) of the active book

-or-

• If no book is active, the HLE of the first book that can be
associated with the active document

-or-

• Nothing, if no corresponding book can be found or no document is
active at all

This axis is the primary workhorse for stepping from a document tree
into a book structure tree, noting that it goes straight to the book HLE
and does not consider any current context. Element names are
currently not considered, so the node test should always be simply an
asterisk (*). For example, the following simple expression is valid and
matches a book HLE:

fmbook::*

This expression will match the book HLE if the book is active or any of
its chapters are active. Again, note that the current element selection
or insertion point location is not relevant.

fmcomp Matches the component-level element in book structure tree for the
currently-active document. That is, it searches for an open book that
contains the currently-active document as a chapter, then matches the
respective component element in book structure tree. If the context is
already a book structure tree, it matches nothing.

This axis is an alternative for moving from a document structure tree to
a book. In most cases, fmbook:: may be more appropriate. Note
that:

• This axis does not consider element names; therefore, the node
test should always be an asterisk (*)

• Like fmbook::, the axis will match the component element
regardless of the current context in the document. That is, the
context does not need to be the document HLE.

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 21

The following example matches all Body elements in an entire book, regardless of whether the
book or a chapter file is currently active. It includes a diagram of how the axes are working. For
more examples, see “Cross-book and cross-file queries” on page 30.

fmchap Matches the HLE of the document associated with the current book
component element; that is, the corresponding chapter file. It only
matches if:

• The current context is a component-level element within a book
structure tree

• The associated chapter is currently open, unless the expression is
being used by a feature that also supports automatic file opening,
such as Node Wizard scripts

For example, assuming that a book is active, the following expression
will match the HLEs of all chapter documents of the book:

//*/fmchap::*

If no book is active, the expression would match nothing. Note the
following:

• This axis does not consider element names; therefore, the node
test should always be an asterisk (*).

• This axis matches HLEs in the main flow only. You cannot step
from a book into any flow other than the main flow.

fmfile Matches the HLE of the file specified as the node test. You can
specify:

• An absolute path

• A relative path (relative the currently-active file)

• The filename of any open file, regardless of its actual location in
the file system

For example, the following expression matches the HLE of the file
somefile.fm:

fmfile::somefile.fm

Note the following:

• The axis is valid for both document and book files. For document
files, the axis will match the HLE of the main flow only, not any
other flow.

• If path separators are required, use forward slashes, for example:

fmfile::C:/MyDocs/somefile.fm

• If the path contains any whitespace, you must enclose it in quotes,
for example:

fmfile::"C:/My Docs/some file.fm"

• The target file must be currently open, unless the feature using the
expression provides file-opening capabilities, such as Node
Wizard scripts;

Axis Behavior

Chapter 2 About FrameSLT XPath

22 FrameSLT 3.0

Abbreviated axes
FrameSLT supports most XPath abbreviations for supported axes and functions, as shown in the
following examples. If not shown, the abbreviation is not supported.

Supported logical test operators

Examples:

child::Para[position() >= 5] Select all Para children in the fifth position or higher.

Heading[. != "This is a heading"] Select all Heading children that do not contain the
text “This is a heading.”

fmbook::*//*/fmchap::*//Body

fmbook – Matches
the book HLE.

Starting from the context of the book
HLE, matches all descendant-or-self
elements. That is, all elements in the
book structure tree.

fmchap – For any elements matched by the
previous axis that happen to be component-
level elements, matches the HLE of the
corresponding chapter (document) file.

Starting from the context of the document
HLE, matches all descendent-or-self
elements that are Body elements. The
behavior is identical to a scenario where you
had the document HLE selected, then issued:

descendant-or-self::Body

Abbreviated syntax Equivalent long version

/Section/Para /child::Section/child::Para

/Section[@Output = "PDF"] Section[attribute::Output = "PDF"]

//Section/Para /descendant-or-self::Section/child::Para

. self::node()

.. parent::node()

/Section[5] /child::Section[position() = 5]

/Body[last()] child::Body[position() = last()]

Operator Meaning

= or == equals

!= does not equal

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 23

Conditional[@Output = "PDF"] Select all Conditional children that have an Output
attribute, and at least one of the values is PDF.

Supported functions
FrameSLT XPath supports the following functions:

• position()

• last()

• contains()

• contains-ci()

• starts-with()

• starts-with-ci()

• not()

The following sections describe these functions in more detail.

Node position functions
FrameSLT supports the following position-related functions:

• position() Returns an element node’s position in a branch relative to its siblings. The
behavior of this function differs according to the most recent previous axis. See the W3C
documentation for more information.

• last() Returns the position of the last element node in the branch containing the context
element node

For example, a test for position() = 3 would only match if the element were in the third
position. Or, a test for last() = 3 would only match if the element were on last on a branch and
in the third position.

In an expression, the order of functions and operational terms is unimportant. For example,
position() = 3 means the same as 3 = position().

For more detailed examples, see “FrameSLT XPath examples” on page 27.

Node content functions
FrameSLT supports the following content-related functions:

• contains(x,y) Returns the string “true” if the string “x” contains the string “y”, otherwise
returns the string “false”. This function is case-sensitive.

• contains-ci(x,y) Returns the string “true” if the string “x” contains the string “y”, otherwise
returns the string “false”. This function is not case-sensitive.

• starts-with(x,y) Returns the string “true” if the string “x” starts with the string “y”, otherwise
returns the string “false”. This function is case-sensitive.

• starts-with-ci(x,y) Returns the string “true” if the string “x” starts with the string “y”, otherwise
returns the string “false”. This function is not case-sensitive.

Note: contains-ci() and starts-with-ci() are not part of the W3C XPath
recommendation. They are “add-on” functions provided with FrameSLT for your
convenience.

All of these functions require two arguments, which can either be a literal string or a node test. In
the case of a node test, the content of the matched node becomes the string for comparison when
the function is evaluated. If any node test for any argument fails, the function will return “false.”

As an example, the following function will return “true” if a child Heading element contains the text
“mytext”:

Chapter 2 About FrameSLT XPath

24 FrameSLT 3.0

contains(Heading,"mytext")

The following function will return “true” if the current context node contains this text:
contains(.,"mytext")

Functions such as these are used in predicates, and if a string comparison operator is missing, the
parser assumes a match of “true” to satisfy the predicate. Therefore, the following XPath
expressions are functionally equivalent:

//*[contains(., "mytext")]

//*[contains(., "mytext") = "true"]

//*[contains(., "mytext") != "false"]

These expressions will all match any element in the tree that contains the text string “mytext”.

For more detailed examples, see “FrameSLT XPath examples” on page 27.

Boolean functions
FrameSLT supports the following Boolean-related function:

not() Returns either the string “true” or “false”, intending to represent the opposite of the
return of its argument.

not() always takes a single argument. If the argument is a node test (that is, returns a node
value), the function will return “false” if a node is found, otherwise it returns “true”. For example, the
following function will return “true” only if a child Heading element does not exist, with respect to
the current context:

not(Heading)

Or as another example, the following function will return true only if the context element itself is not
named Heading:

not(self::Heading)

If the argument returns a string value, not() will return “true” only if the return string is empty or
equals “false”. For example, the following functions will return “true”:

not("")

not("false")

Besides literal strings, any argument that returns a literal string, such as another function, is
evaluated in the same fashion. For example, the following function will return “true” only if the
context node does not contain the text “mytext”:

not(contains(.,"mytext"))

The not() function is a powerful tool that can make XPath queries more precise, but the logic can
quickly become complex. For more detailed examples, see “FrameSLT XPath examples” on
page 27.

Node test wildcards
FrameSLT supports the asterisk (*) wildcard for node testing, which indicates “any” element node.
For example, the following expression will match every element in the document:

//*

The asterisk will not match text nodes, and it must appear alone. For example, you cannot use:
//B*dy

...to match Body elements.

EDD-applied prefixes/suffixes and node
testing

When you test an element for content, such as in the following expression:

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 25

//Section[Heading = "My Heading"]

...no prefixes or suffixes applied by the EDD are considered. Therefore, in the example above, the
Heading element would have to contain the text “My Heading” as typed by an author, and any
EDD prefixes and/or suffixes are completely ignored.

Unsupported syntax
The following types of XPath syntax are not supported by FrameSLT:

Parenthetical expressions in compound logical tests
Compound logical tests are supported, but not with parenthetical expressions. Therefore,
compound conjunctions are also not supported. For example, the following expression cannot be
processed:

Body[. = "MyText" and (last() or 5)]

Because “back-to-back” predicates are considered to have an “and” logic, the following expression
is also not supported:

Body[. = "MyText"][5 or last()]

However, all of these situations can be replicated in a longer form, using the “self” axis and
multiple predicates, for example:

Body[. = "MyText" and .[last() or 5]]

Abbreviated attribute and value test
The following abbreviated syntax for testing an attribute value is not supported:

Body[@Output("PDF")]

Instead, use the following:
Body[@Output = "PDF"]

Standalone “go-to-root” XPath expressions
The following expression has no relevance in FrameSLT and is therefore not supported:

/

With XSLT, you might see this XPath expression frequently in template elements, such as
<xsl:template match="/">. However, this concept has no application in FrameSLT and
therefore the expression cannot be parsed.

Direct syntax to unique ID attribute nodes
The following syntax, used to select an element node with a particular unique ID attribute, is not
supported:

ElementName("ID")

For example, the following expression, used to find a child Body element with the “MyID” unique
ID, cannot be parsed:

Body("MyID")

If you require a query using a unique ID attribute, use the attribute name directly. For example:
Body[@ID = "MyID"]

Limitations and known issues
The following sections describe known discrepancies between the established XPath standard
and FrameSLT XPath.

Chapter 2 About FrameSLT XPath

26 FrameSLT 3.0

Testing element node text
When testing the text of an element node, only the first paragraph is tested. This includes
expressions with whole string evaluations and expressions with functions such as:

//Section[Heading = "MyHeading"]

//Body[contains(.,"some text")]

//BulletList[starts-with(.,"R")]

This limitation is set because test strings could otherwise become enormously long, such as
testing the text of the highest-level element of a 200 page document. Strings of this length would
adversely affect performance and likely cause crashes. If you need to test the text in a higher-level
element, consider using predicates to test subordinate elements, accomplishing the same goal
while reducing the processing strain. For example, instead of:

//Section[contains(.,"some text")]

...you could use an expression such as:
//Section[descendant::*[contains(.,"some text")]]

or the following equivalent expression:
//Section[contains(*,"some text")]

This limitation does not apply to testing attribute values. For attribute nodes, all text of all values is
always tested.

Finding text() nodes with no siblings
All elements that contain text also have an implied text node, the text itself. While FrameSLT
supports the text() node test, it will not find any text nodes that have no siblings. That is, it a text()
node has no element node siblings, FrameSLT XPath is currently unable to find it.

It is hoped that this issue should rarely be of importance in FrameSLT functionality, because
FrameMaker’s internal representation of structure would make it difficult to support such XPath
constructions. For Node Wizard functions, you can use actions such as “Wrap contents in” and
“Paste clipboard over contents” to work around the issue.

Comparing two nodes without a bracketed predicate
In most cases, FrameSLT supports the shorthand syntax for testing node content, such as:

//Heading = "My Heading"

...which is equivalent to:
//Heading[. = "My Heading"]

The shorter version will not work, however, if you are attempting to compare two node sets. For
example, the following expression is not supported:

//Heading = Body

To accomplish this type of query, you must write it out with an explicit bracketed predicate using a
“to self” node, such as:

//Heading[. = Body]

Normally, these types of comparisons are rare. Note that this limitation applies to the “baseline”
expression only. If the test is already within a predicate, the workaround is not necessary. For
example, the following expression will work fine:

//Section[Heading = Body]

In some cases with long, complex expressions, the shorthand format has exhibited problems. In
these rare cases, the longer format can be used to work around the bug.

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 27

FrameSLT XPath examples
Tips: Always enclose all string literals in single or double quotes. If your literal must contain

double quotes itself, enclose the literal in single quotes, and vice-versa.

Do not enclose integers in quotes.

Don’t forget the parenthesis on functions, such as position(). Without the parenthesis,
FrameSLT will think it is simply looking for an element named position.

Remember that XPath expressions can become long and complex. Any error, even as
small as a single character, will likely cause an expression to fail.

“Single document” queries
The following examples are applicable for querying within a single document; that is, no traversing
across books or between separate files.

Expression Meaning

Body Match all Body children of the context
node.

/Body Match all Body children of the
highest-level element (HLE)

Body[1] Match the first Body child of the context
node.

//Body Match all Body descendants of the HLE,
and the HLE if it is a Body.

/descendant::Body[1] Match all Body descendants of the HLE,
that are the first Body elements in their
respective branches.

Chapter/Section//Body Match all Body descendants of the
Section children of Chapter

Chapter/Section//text() Match all text node descendants of the
Section children of Chapter

Body/parent::Section Match all Body elements with a Section
parent

Body/ancestor::Section Match all Body elements with a Section
parent or at least one Section ancestor

Body/ancestor::Section/ancestor::Section Match all Body elements with at least two
Section ancestors

../Body Match all Body siblings of the context
node

/* Match the highest-level element.

//node() Match every element and text node in the
tree.

//* Match every element node in the tree.

//text() Match every text node in the tree.

//*[@Output] Match every element node in the tree with
an Output attribute

Chapter 2 About FrameSLT XPath

28 FrameSLT 3.0

//*[@Output = "PDF"] Match every element node in the tree with
an Output attribute set to PDF. In
FrameSLT, if the attribute has multiple
values, they are all considered.

//*[@Output != "PDF" or @Output != ""] Match every element node in the tree with
an Output attribute not set to “PDF” (any
of the attribute’s values), or not empty.

//*[@*] Match every element node in the tree that
has at least one attribute, regardless of the
attribute contents, if any.

//Body[../@Output = "PDF"]

or

//Body[..[@Output = "PDF"]]

Match every Body element in the tree
whose parent has an Output attribute set
to “PDF”.

//Body[parent::Section/@Output = "PDF"]

or

//Body[parent::Section[@Output = "PDF"]]

Match every Body element in the tree with
a Section parent, whose Output
attribute is set to “PDF”.

//Body[parent::Section[3]] Match every Body element that has a
Section parent, which is third Section
element on the branch.

//Body[last() = 5] Match every Body element in the tree that
has exactly four Body element siblings.

//*[5 and 4] Matches nothing. An element cannot
occupy two positions.

//*[@Output = "PDF"][5] Matches the same thing as:

//*[@Output = PDF and 5]

//Section[Heading = "This text"] Match every Section element node in the
tree with a Heading child, with the text
“This text”.

//*[position() > 3 or 5 > position()] Matches the same thing as:

//*[4]

//Heading[. = "This text"]

or

//Heading = "This text"

Match every Heading element node with
the text “This text.”

//Heading[. > "MyHeading"] Match every Heading element node with
text alphabetically greater than
“MyHeading”, such as a Heading with the
text “YourHeading.”

Note: This type of test is more
appropriate for text strings with
no spaces. If you attempt to
alphabetically compare strings
with multiple words, the results
may not be as reliable.

Expression Meaning

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 29

//*[@Output = "PDF" or Body = "text" or
5 or 4 or last() or .]

Match every element node in the tree. The
final “to self” (.) test satisfies everything
and negates all other logical tests if they
fail.

//*[contains(.,"mytext")] Match every element node in the tree that
contains the text “mytext”.

//*[contains-ci(.,"mytext")] Match every element node in the tree that
contains the text “mytext”, without regard
for case-sensitivity.

//*[contains(@*,"MyValue")] Match every element node in the tree that
has an attribute that contains the text
“MyValue”.

//*[not(contains(@*,"MyValue"))] Match every element node in the tree that
does not have any attribute that contains
the text “MyValue”.

//Section[not(Body)] Match every Section element in the tree
that does not have a child element named
Body.

//Section[not(Body[contains(&*,
"MyValue")])]

Match every Section element in the tree
that does not have a child element named
Body with any attribute containing the text
“MyValue”.

//*[not(self::*[position() = last()])] Match every element node that is not the
last element in its respective branch.

//Heading[starts-with(.,"R")] Match every Heading element that starts
with the letter “R”.

//Heading[starts-with(.,"R") or
contains(.,"My Heading")]

Match every Heading element that starts
with the letter “R” or contains the text “My
Heading”.

//Section[Heading = Body] Match every Section element that has a
Heading child and a Body child that both
contain exactly the same text.

//Section[contains(Body,Heading)] Match every Section element that has
any Body child that contains the whole text
string wrapped in any Heading child.

Expression Meaning

Chapter 2 About FrameSLT XPath

30 FrameSLT 3.0

Cross-book and cross-file queries
The following examples use the special axes for traversing between files and books, as described
under “Special book- and file-related axes” on page 19.

Expression Behavior

fmbook::*

-or-

/fmbook::*

If the context is an active document:

Matches the highest-level element (HLE) of
the “parent” book for the active document;
that is, the first active book that can be
found that contains the active document as
a chapter. If no applicable book can be
found, it matches nothing.

If the context is an active book:

Matches the HLE of the book.

//fmbook::* Syntax error, because it effectively
represents two axes back-to-back
(“descendent-or-self” and “fmbook”.

fmbook::*/* If the context is an active document:

Matches all child elements of the “parent”
book HLE. In a traditional book without
folders and groups, it would match all
component elements. If no applicable book
can be found, it matches nothing.

If the context is an active book:

Matches all children of the book HLE.

fmbook::*//*/fmchap::* If the context is an active document:

Matches the HLEs of all chapter documents
in the parent book.

If the context is an active book:

Matches the HLEs of all chapter documents
in the book.

fmbook::*//*/fmchap::*[self::Chapter] If the context is an active document:

Matches the HLEs of all chapter documents
in the parent book that have the tag
Chapter.

If the context is an active book:

Matches the HLEs of all chapter documents
in the book that have the tag Chapter.

fmbook::*//*/fmchap::*//Body If the context is an active document:

Matches all Body elements in the parent
book.

If the context is an active book:

Matches all Body elements in the book.

Chapter 2 About FrameSLT XPath

FrameSLT 3.0 31

fmcomp::*/ancestor::*//*/fmchap::*//
Body

If the context is an active document:

Matches all Body elements in the parent
book.

If the context is an active book:

Matches nothing. fmcomp is only relevant
when the context is a document.

fmfile::somefile.fm In all contexts:

Matches the HLE of a file with the name
somefile.fm. The remainder of the
absolute path is not relevant, unless you are
attempting to open the file, in which case the
file must be in the same folder as the current
context file.

fmfile::somefile.fm//Body In all contexts:

Matches all Body elements in the file
somefile.fm.

fmfile::somefile.fm/
fmfile::someotherfile.fm/Body

In all contexts:

Matches all Body elements in the file
someotherfile.fm, provided that an HLE
for somefile.fm was found first. The
expression effectively steps through multiple
documents in a single query.

fmfile::somefile.fm/fmbook::*//*/
fmchap::*//Body

In all contexts:

Matches all Body elements in the parent
book for the file somefile.fm.

Expression Behavior

Chapter 2 About FrameSLT XPath

32 FrameSLT 3.0

	Chapter 2 About FrameSLT XPath
	About XPath
	XPath quick primer
	Nodes vs. elements—Terminology
	Supported axes
	Special “fmprop” axis
	Special book- and file-related axes
	Abbreviated axes
	Supported logical test operators
	Supported functions
	Node position functions
	Node content functions
	Boolean functions

	Node test wildcards
	EDD-applied prefixes/suffixes and node testing
	Unsupported syntax
	Limitations and known issues
	Testing element node text
	Finding text() nodes with no siblings
	Comparing two nodes without a bracketed predicate

	FrameSLT XPath examples
	“Single document” queries
	Cross-book and cross-file queries

