
InsetPlus 3.10
User Guide

©2015 West Street Consulting. All rights reserved. Adobe and FrameMaker are registered trademarks of
Adobe Systems, Inc. FrameScript is a registered trademark of Finite Matters, Ltd. XPath is a language
standard developed and maintain by the W3 Consortium. Quadralay and WebWorks are registered
trademarks of Quadralay Corporation. All other marks belong to their respective owners.

West Street Consulting reserves the right to change its software and documentation without notice. In
addition, West Street Consulting is not responsible for any consequences that result from user, application,
or documentation error. By using this software, you agree to do so at your own risk.

InsetPlus 3.10 User Guide

Table of Contents

Chapter 1 — Introduction
Licensing information ... 5

Important disclaimer ... 5

Tutorial information .. 5

What is InsetPlus? ... 5

How it works overall .. 7

Source elements versus reference elements .. 7

Important conref note ... 8

Requirements to use InsetPlus .. 8

More about inset elements and attributes ... 8

Valid element types for inset elements ... 9

Translation of the InsetPlus interface ... 9
Selecting a language ... 10
Language configuration .. 10
Additional language utilities ... 11

Limitations .. 11

Technical details ... 11

Trademarks ... 12

Chapter 2 — Managing Inset Sources and References
Right-click menu behavior ... 13

Editing a reference inset element .. 13

Source module management ... 14
Naming and storing inset sources ... 14
Updating sources ... 14
Nesting inset references within inset sources ... 14

Inset reference management ... 14
Updating inset references .. 16

About attribute value transfer during updates ... 17
About relative versus absolute file paths .. 17
About nested insets ... 18
Updating the source of an inset from the reference .. 19
Updating all sources referenced by a document ... 20

Chapter 3 — Preferences and Utilities
Local settings .. 21

Source module tracking .. 21
Requirements to use source module tracking ... 22
How source module tracking works - Overview .. 22
Reporting source module usage .. 22
Starting to use the tracking feature ... 23
Populating your tracking data ... 23
More about the source module tracking report ... 23
More about the tracking data folder .. 24
About whole-document updates and source tracking ... 24
About tracking data and absolute vs. relative paths .. 24

InsetPlus 3.10

About element tags and source tracking ... 25
Tracking data maintenance and cleanup ... 25

General utilities ... 25
Inset inventory report .. 25
Coloring insets .. 25
Clearing insets ... 26
Source module collection .. 26

Converting insets to conref mode ... 27

Chapter 4 — External Calls to InsetPlus
How to send an external call to the plugin ... 29

General information on external calls ... 29
Specifying document and book arguments ... 30
Specifying Boolean arguments ... 30

Call reference .. 30
ChangeCallDelimiter ... 30

Syntax .. 30
Returns .. 31
ChangeCallDelimiter syntax example ... 31

ColorInsets .. 31
Syntax .. 31
Returns .. 32
ColorInsets syntax examples ... 32

GetParm .. 32
Syntax .. 32
Returns .. 32
GetParm syntax examples .. 33

Hello ... 33
Syntax .. 33
Usage description .. 33
Returns .. 33
Hello syntax example ... 33

LaunchInsetEditor .. 33
Syntax .. 33
Returns .. 34
LaunchInsetEditor syntax examples .. 34
LaunchInsetEditor code sample ... 34

SetParm .. 35
Syntax .. 35
Returns .. 35
SetParm syntax examples .. 36

UpdateInsets .. 36
Syntax .. 36
Returns .. 37
UpdateInsets syntax examples .. 38

InsetPlus 3.10 5

Chapter 1 — Introduction

Thank you for using InsetPlus plugin for structured FrameMaker. If you have any
comments or questions regarding the software or its documentation, please send them to
info@weststreetconsulting.com.

ATTENTION PRE-3.x USERS: The former “classic mode” is now deprecated. Only
“conref mode” is now supported.

Licensing information
InsetPlus is distributed as freeware, which means you may use it in any setting or
organization in an unlimited fashion, free of charge. Furthermore, you are granted an
unrestricted license to bundle it with your own commercial solutions, as applicable.

Note that West Street believes this software to be reasonably robust, but no guarantees
are made whatsoever. If it deletes content, crashes your hard drive, or brings a 30-year
famine and pestilence upon the land, West Street cannot be held responsible. Use it at
your own risk!

Having said all that, West Street is proud of its software and is committed to delivering
reliable products that serve real needs. If you encounter problems with this software or its
documentation, please send them to us and we will address them with all due diligence.

Important disclaimer
Again, when you use any West Street software, you agree to do so at your own risk. West
Street Consulting and affiliates are not responsible for any damages or loss to software,
hardware, or data, whether by user or software error, or due to errors in this
documentation.

Tutorial information
InsetPlus includes a basic tutorial which may be your best resource for getting familiar
with the software. If a normal install was performed, the tutorial PDF file is located in the
same folder as this document, and uses the sample files that installed into the sample
files folder.

What is InsetPlus?
InsetPlus is a text inset replacement tool for structured FrameMaker. The overall concept
of functionality is identical to native text insets, with which you can store chunks of content
as “modules” in separate files, and then inset those modules into other files. InsetPlus
takes this paradigm and adapts it to the structured environment, leveraging the power of
structural metadata to offer more features and flexibility.

The primary reason for using text insets is content reuse, such that you can author a
piece of content one time, then reuse it in other files an unlimited number of times. Native
text insets, while robust and reliable, have certain limitations that are well-known to active
users. By leveraging the richness of structural metadata, InsetPlus takes the inset

mailto:info@weststreetconsulting.com

Chapter 1 — Introduction

6 InsetPlus 3.10

concept to a higher level and overcomes some of these limitations. Specifically, InsetPlus
provides the following advantages, versus native insets:

• Editable text Unlike native insets, the inset text comes in “live.” This means it acts
like any other text and can be edited at will. It can also be refreshed from the source
at any time to override manual alterations.

• Easy path to update a module source InsetPlus has a reverse path to update the
source of an inset. Once you inset a module, it can be edited in the new document.
Afterwards, you can choose to “update the source,” which takes your changes and
updates the source itself.

• No limitations on source modules per file With native insets, your source module
must be an entire flow of some document. With InsetPlus, you can put as many
source modules as you want in any flow, because the modules are identified by
structural metadata. The contents of a module source, therefore, can range from an
entire flow down to a single character. A module source can even be contained in the
same document and flow as a reference to it.

• Source module use tracking InsetPlus includes a feature which allows you to track
where your source modules are being used.

• Use of books for module “repositories” In addition to storing multiple module
sources in a single file, you can also store a set of “source files” in a book and point
your references to that book. In this way, an inset reference can search an entire book
for a source module. This type of query functionality allows you to set up a virtual
“database” of module sources, with the database being nothing more technically
complex than structured FrameMaker files.

• Robust nested inset support Because of the cascading nature of InsetPlus inset
updates, module sources can inset other modules, with virtually no limit to the level of
nesting. Note, however, that module nesting can become a content management
challenge that must still be addressed.

• Better visibility and management of insets Because inset containment is based
on structural metadata, you can use all of structured FrameMaker’s native
conveniences to navigate and manage the content. The Structure View makes it easy
to see exactly what text belongs to what inset.

• Auxiliary management tools InsetPlus provides a number of tools to assist with
inset management, including inset coloring and reporting.

InsetPlus is based on the author’s best judgment of most-needed features, gathered from
personal usage and input from users like you. If you have suggestions for InsetPlus,
please send them to West Street (info@weststreetconsulting.com).

Note: This document assumes a certain level of knowledge with structured
FrameMaker. Furthermore, it assumes that you will have some access to EDD
development expertise, such that your EDDs can be properly updated to allow
the prerequisite text inset element(s) as applicable. In other words, for further
details about structured FrameMaker and EDD development, you should consult
the FrameMaker documentation from Adobe.

mailto:info@weststreetconsulting.com

Chapter 1 — Introduction

InsetPlus 3.10 7

How it works overall
InsetPlus uses the traditional text inset concept, in that a module of content is stored in
one location, and reused in one or more other locations. Unlike native text insets, though,
InsetPlus leverages the markup of a structured document to enhance inset functionality
and overcome limitations that are inherent to an unstructured environment.

For both an inset source and an inset reference, the content is wrapped in a designated
text inset element and provided the proper attribute markup to identify it. An inset source
element is tagged with some form of ID and each reference to a particular source
provides a pointer to that ID and the source filename. When setting up reference
elements, InsetPlus manages all attribute markup automatically, allowing you to work
within convenient dialog boxes to set up reference elements.

In brief, the following might be a general start-to-finish process for creating an inset with
InsetPlus:

 1 Create the source module somewhere by inserting a source element and putting the
module content within. Then, give the source element an ID, according to the attribute
usage conventions specified in your InsetPlus settings.

 2 In the document where you want to inset that module, insert a reference text element
and point it to the source module element. To accomplish this, the “reference” element
must indicate the name of the source and the file that contains it. All this can be
completed with the inset element editor.

 3 Update the reference created in the previous step. When this occurs, the entire
contents of the source element replace the entire contents of the reference element.

Naturally, the final step can be repeated to refresh the inset reference any time it is
necessary. As you may have noticed, the concept of a “source” versus “reference” inset
element is important to fully understanding InsetPlus. Before using InsetPlus, you should
read “Source elements versus reference elements” on page 7.

Source elements versus reference elements
In InsetPlus, all inset sources and references must be contained in some kind of text inset
elements. Source and reference elements are defined as follows:

• Source element Any element with some form of ID assigned, according to the
conventions defined in your InsetPlus settings. Source elements should be managed
using standard FrameMaker attribute tools; that is, InsetPlus has no dedicated dialog
box for editing source element IDs.

• Reference element A reference element resides in a document wherever you
intend to inset an inset source. It must indicate the ID and filename of the source in a
“conref” attribute, according to your InsetPlus settings. With these two pieces of
information, InsetPlus will be able to locate the source material and inset the content
as needed.

The functional model is very similar to the DITA conref mechanism. Note, however,
InsetPlus is not advertised or intended as a DITA tool. The DITA mechanism is used
simply because it is straightforward and well-designed. Neither West Street Consulting
nor InsetPlus have any association with the OASIS DITA Technical Committee or any
other efforts related to the development and maintenance of the DITA standard.

Chapter 1 — Introduction

8 InsetPlus 3.10

Important conref note
Unlike DITA, InsetPlus does not currently require hierarchical ID recognition. That is,
when searching for a source element, it searches the specified file for the ID of the source
element without consideration for the IDs of any ancestors. This means the following:

• Contextual unique IDs for conref links, as used in DITA, have no application within
InsetPlus. The plugin can read them, but it will ignore any hierarchical context and
simply look for the base ID specified.

• If you have your local settings set up as such, InsetPlus can write fully contextual IDs
when creating the conref strings during reference element creation. This option does
not affect InsetPlus behavior at all, and would generally only be chosen if the links
must be read by some DITA-compliant process external to FrameMaker. The option is
disabled by default, resulting in conref strings that include the source element ID only.
For more information, see “Local settings” on page 21.

As an example, a DITA conref attribute might contain something like:

MyDoc.xml#topicID/sourceElemId

...which indicates that the ID of the source element is “sourceElemId”, but it is subordinate
to some other element whose ID is “topicID”. For the purposes of updating the inset,
InsetPlus sees only:

MyDoc.xml#sourceElemId

The important item to note is that InsetPlus will not require the specified hierarchy in order
to locate the source and update the inset, and it will only write conref strings such as this
if your local settings direct as such.

Requirements to use InsetPlus
InsetPlus usage requires structured FrameMaker, as the advanced features of InsetPlus
depend on structural markup. Additionally, you must be using an EDD that provides at
least one element with the following two attributes:

• An ID attribute Source elements are identified by some form of ID.

• A “conref” attribute On a reference element, the pointer to the desired source is
contained in a “conref” attribute.

The names of these attributes is defined in your InsetPlus settings (see “Local settings”
on page 21). Typically, the ID attribute is any attribute defined as a unique ID in the EDD
and the conref attribute is simply “conref”.

More about inset elements and attributes
Typically, a source inset must have the same tag as any reference elements that point to
it. The particular tag is not important, only that it is the same between source and
reference elements. Therefore, in your structure definition, any element to be used for a
source or reference element should have both a source name and a conref attribute.

The requirement for element tags to be the same is drawn from the DITA standard.
InsetPlus provides an option to disable this requirement in your local settings. For more
information, see “Local settings” on page 21.

A reference element and its respective source might appear as follows:

Chapter 1 — Introduction

InsetPlus 3.10 9

The following rules apply:

• The source file and the source element ID are separated by a pound sign (#).

• The source file path is normally relative, although InsetPlus does allow you to use
absolute paths. If you use absolute paths, you should be aware that you are deviating
from the normal conref standard.

If you want to use attributes other than conref and the unique ID, you can change this
specification in your local settings. For more information, see “Local settings” on page 21.

Valid element types for inset elements
As defined in an EDD, the following element types are valid for use as inset elements:

• Container

• Table

• Table Row

• Table Cell

The remainder are either known to be unsupported or are currently untested. In all cases,
a reference element and its corresponding source should be the same type. Note that for
table rows, the source and reference elements must contain the same number of cells,
otherwise an update will fail.

Translation of the InsetPlus interface
InsetPlus supports customizable translations of its menus, dialog boxes, and messaging,
based on “lookup” files that you can create and edit. When a string is required for a dialog

REFERENCE

SOURCE

Chapter 1 — Introduction

10 InsetPlus 3.10

box control or a message, it looks for that string in one of these lookup files according to
the currently active language. Note the following:

• West Street does not claim support for any foreign language, only that you may add
your own translations as desired. You can use this feature to implement a real
language or simply rename labels, etc. using text that you like better. The plugin
installs with a sample “Bogusian” language intended to serve as a model for setting
up another language.

• West Street does not guarantee that any particular feature will work correctly once
you implement a new language. We intend for it to work and will address any
problems you find; however, you should be aware that it is impossible to fully test a
feature with a virtually infinite number of variations/permutations.

• West Street believes that translation features cover about 95% of the strings that are
associated with active features. This means that a small percentage of strings remain
fixed in English, especially as related to short prompts and other messaging.
Additionally, note that none of the features scheduled for deprecation support
translatable strings, such as the transformation features.

• West Street believes that the unicode range of character sets is fully supported for
replacement text. The Bogusian sample provides an example of this.

• West Street believes that this feature is generally applicable for specialized use by
select users only. For that reason, this documentation is brief. If you need assistance
with translation features, please contact us and we will be happy to help.

Selecting a language
To select a language, select InsetPlus > Language > Set Language. Any languages
that are properly configured will appear in the list (see “Language configuration” on
page 10). A language change takes effect immediately.

You can also set a default language upon startup in your preferences file (see “Local
settings” on page 9). This setting provides an option to default to the current language in
use by the FrameMaker interface. Again, be aware that any setting in this file must
represent a properly-configured language

Language configuration
For any new language, the plugin requires two lookup files, both of which much reside
together in the plugin installation folder or the settings folder. These files are named as
follows, where language is the case-insensitive language name that will appear in the Set
Language dialog box:

• InsetPlus_Strings_Dialogs_(language).fm - The lookup file for strings that appear in
the menus and major dialog boxes, such as the Node Wizard. This file consists of a
set of tables with the English text in the left column and the replacement text in the
right. For each dialog box string, the plugin effectively starts with the English text and
attempts to look up the translation based on the contents of this file.

• Note that for these types of strings, the plugin is starting with “built-in” English
versions. Therefore, when set to English, the plugin does not use this file. That is, a
file named InsetPlus_Strings_Dialogs_English.fm will never be used. However, it is
always used for any other language.

Chapter 1 — Introduction

InsetPlus 3.10 11

• InsetPlus_Strings_General_(language).fm - The lookup file for all other strings that
strings that appear in error reports, short interactive prompts, and other places. The
strings in this file are looked up based on an ID string, rather than the full English
version. For this type of file, a InsetPlus_Strings_General_English.fm file does exist
and is the source of all English strings that relate to prompts and messaging.

The two different files with their differing methodologies are required to accommodate
how FrameMaker handles strings with respect to dialog boxes versus other functional
areas, when programming to its API. Further explanation on this subject is beyond the
scope of this document.

Once both of these files are properly-named and reside in the installation or settings
folder, the respective language name automatically appears in the Set Language dialog
box. Note the following:

• For new languages, the best approach is to copy the “Bogusian” examples and use
them as templates. Each file contains additional instructions within.

• If you alter the file structure or otherwise make changes beyond that described in this
document or within the files themselves, the results could be completely
unpredictable. At worst, you may cause FrameMaker to crash.

• The strings files can also be stored in MIF format.

Additional language utilities
The plugin includes the following additional utilities in the Language menu that may be
used rarely, if at all:

• Create Dialog Strings File - Creates a new dialog and menu strings file with English
text only, ready for translation to a new language.

• Update Dialog Strings File - Attempts to update an active dialog and menu strings
with the latest English strings used by the plugin. You must have a valid strings file
currently open. Any new English strings are added as new rows to the respective
tables. Any strings in the file that appear to be unused are colored red.

Note the following:

• These features were originally intended as a convenience for making updates, but
may be deprecated. Again, it is recommended that you use the Bogusian files as
templates instead.

• These features apply to the dialog strings file only. For the general strings file, you
must always use an existing file as a template and all maintenance is done manually.

Limitations
InsetPlus is not a content management system. While it allows granular content reuse
and basic source module tracking, it does not provide any other overhead or automation.
For example, if you update a module source, there will be no automatic update to your
documents that reference it. For best results with InsetPlus, you should always remember
to manually update all inset references in a document or book before publishing.

Technical details
For those of you who like to know more about the internal workings, note the following:

Chapter 1 — Introduction

12 InsetPlus 3.10

• Source file format A source module must be in either structured FrameMaker,
XML, or SGML format. InsetPlus cannot inset text from any file without XML or
XML-like structural metadata. Note that this ability to inset text from XML may provide
a convenient means of inserting XML content into your document without read/write
rules or a structured application. Once content is inset into a complete template, that
EDD will take over and format the text accordingly, provided that the element tags in
the XML match the element tags in the EDD.

• How content is transferred from source to reference When updating a text inset,
the actual internal process that transfers the content is no more complex than a
programmatic copy and paste. This ensures that native conveniences associated with
FrameMaker copy/paste are preserved, such as the automatic readjustment of
referenced file and graphics links.

• Applicable flows Currently, InsetPlus processes the main flow only, for any
reference or source element activity. This limitation can be removed if dictated by
popular demand.

Trademarks
Adobe® and FrameMaker® are registered trademarks of Adobe Systems, Inc. InsetPlus
is not a product of or endorsed by Adobe Systems, Inc., and West Street Consulting is a
third-party entity not officially associated with Adobe Systems, Inc. Further legal
information concerning Adobe and FrameMaker can be found at www.adobe.com.

http://www.adobe.com

InsetPlus 3.10 13

Chapter 2 — Managing Inset
Sources and References

This section contains information on creating and updating inset sources and references.

Right-click menu behavior
The majority of individual element functions and commands are found in the right-click
popup menus in the Structure View and document window. All commands are based on
invoking some function on a text inset element in the tree. If you have an entire text inset
element selected, the function will apply to that element. If you do not, InsetPlus will walk
up the tree from your current selection or insertion point and choose the first applicable
element it finds; that is, the first element with a populated conref attribute.

Briefly, the right-click commands are as follows:

• Edit Inset Element Launches the inset element editor, with which you specify the
parameters for an inset element. For more information, see “Editing a reference inset
element” on page 13.

• Update Inset Reference Updates the selected or nearest ancestor reference
element. It applies to inset references, not sources.

• Jump To Inset Source Jumps to the source document and element of the nearest
inset reference. Applies to reference inset elements only.

• Update Inset Reference And Nested Insets Updates the selected or closest
ancestor reference element, then performs a cascading update of any nested insets
that came in with the update. For more information on nested insets, see “Nesting
inset references within inset sources” on page 14.

• Clear Inset Reference Deletes the entire contents of the nearest inset reference
element. This command does not affect inset source elements.

• Select Inset Element Selects the nearest inset element, reference or source.

• Update Inset Source Finds the nearest inset reference element, and updates the
source element with its contents. This command effectively performs the reverse
process of a reference update. For more information, see “Updating sources” on
page 14.

• Report Source Module Usage Produces a source module tracking report for the
selected source inset, or the source referenced by the selected reference inset. For
more information, see “Source module tracking” on page 21.

Editing a reference inset element
Note: InsetPlus element tools apply to the configuration of reference insets only.

Source elements are identified by a simple ID that may be configured using
standard FrameMaker attribute tools.

Reference elements are edited through a dialog box that is produced when you right-click
on the element and select Edit Inset Element. You can launch the dialog box through the

Chapter 2 — Managing Inset Sources and References

14 InsetPlus 3.10

Structure View or the document window. Although inset element parameters are stored
as attribute data, you should avoid editing the attributes directly through the attribute
editor. InsetPlus expects certain syntaxes and configurations that could easily be violated
by manual use, causing an inset element to become non-functional.

The following is some general information about the editor:

• Source file specification You can specify a source file by either selecting from an
open files list, or browsing the file system.

• Previews The editor provides a basic preview function, but only if the source file(s)
are open. If you’ve selected a book as the source file, the previews will only include
those book files that are open.

Tip: You can double-click a name in the previews list to automatically populate the
Inset name box.

• Inset history The drop-down list associated with the inset name contains a basic
history of insets you have used before. By selecting an item from the list, the inset
name and source file will automatically be populated in the editor. The history is
limited to 100 items, and you can rearrange and/or delete items by selecting
InsetPlus > Edit Inset History.

Source module management
An inset source is a module of content intended for reuse somewhere else. It must be
contained in a text inset element, and when referenced, the entire contents of that
element are copied to the place where it is referenced.

Naming and storing inset sources
You can store an inset source in any FrameMaker document, with any ID. You should be
sure to use a unique ID within that document for any source, and if you intend to
reference the source at a book level, the name must be unique throughout the entire
book.

Updating sources
You can automatically update a source from a place where it is referenced. That is, when
you can make changes at the reference point and then refresh the source with your
changes. This process must occur at the point of reference because the source itself
does not know what reference element to update itself from. For more information on
updating a source from a reference, see “Updating the source of an inset from the
reference” on page 19.

Nesting inset references within inset sources
An inset source can contain any nature of content, including nested references to other
sources. For more information, see “About nested insets” on page 18.

Inset reference management
An inset reference is a place where an inset source is referenced, or in other words,
where it is inset. It is represented by a text inset element, whose attributes specify the file

Chapter 2 — Managing Inset Sources and References

InsetPlus 3.10 15

and name of the source inset element, and whether the path to the source file is absolute
or relative. When the reference is updated, the entire contents of the source element are
copied over the current contents of the reference element. The reference text inset
element must remain at the reference point to preserve the link to the source, serving as
a sort of anchor for the inset.

To create an inset reference

 1 Insert a text inset element in the location where you want to inset content.

 2 If the inset editor does not appear automatically (based on your InsetPlus settings),
right-click on the element and select Edit Inset Element.

 3 In the inset element editor, edit the following:

 4 Click OK, and if prompted to update the inset now, choose Yes or No. An inset
reference can be updated at any time the source file is accessible.

To remove an inset reference

Unwrap the inset element, if possible.

Inset ID The name/ID of the source module to reference. This value
should be exactly the same as the name specified when the
source was created.

Tip: If you have a source file specified and it is currently
open, you can view the source names in the previews
area. Also, you can automatically populate the Inset
ID text box by double-clicking an item in the Preview
area.

Source file select/
browse

Means by which to designate the file that contains the source
element. You may select a FrameMaker document or a book.

Use relative file
path

Causes InsetPlus to attempt a relative path specification. If it
fails, it will produce a warning and automatically set the path
type as “Absolute” when you click OK. The only reason it
should fail is if you select a source file that is on a different
drive than the document you are authoring.

Show inset
previews

Allows a basic view of insets and respective content in the
specified source file.

Tip: You can double-click an inset name in the left pane to
automatically populate the Inset ID text box above.

Show potential
sources that
currently have no
ID assigned

Allows you to view previews for potential source elements
that currently have no ID assigned. If you have chosen to
identify source elements by unique ID attributes, this will
allow you to view previews for all elements in the source file,
whether or not the unique ID attribute is populated. In any
case, you cannot reference a currently unnamed source.

Jump To Source Closes the editor and jumps to the inset source that was
specified in the editor. If the selection in the Preview area
differs from the ID specified in the text box, the previews
selection is used.

Chapter 2 — Managing Inset Sources and References

16 InsetPlus 3.10

-or-

Use the FrameMaker attribute editor to delete the entire contents from the conref
attribute.

Updating inset references
You can update references one at a time, a whole document at a time, or a whole book at
a time. In either case, note the following important information about updating insets:

• When an inset updates, the contents of the reference element are replaced by the
contents of the source element. Any manual edits within the reference element will be
overwritten.

• If a particular source file is not open, InsetPlus cannot access the source element.
InsetPlus can attempt to open files, if you have your local settings set as such. For
more information, see “Local settings” on page 21.

• Updating references at a document or book level is just that - a reference update. Any
source text inset elements found in the document or book are unaffected. For that
matter, during any kind of reference update, your source content should never be
affected, other than the replacement of any content within valid reference inset
elements.

• InsetPlus does provide a “reverse path” for updating a source from a reference, on an
element-by-element basis. For more information, see “Updating the source of an inset
from the reference” on page 19.

Note: If your local settings are set to allow it, you may also update all sources
referenced by an entire book or document. For more information, see
“Updating all sources referenced by a document” on page 20.

• When an inset is updated and content comes in, that content will respect the
properties of the referencing document, such as conditional text and variable settings.
If the content comes from a document with a different EDD, the content will assume
the rules of the EDD of its new home, as applicable.

Notes: When you update an inset reference, the existing content (if any) of the
reference text inset element is replaced with the content from the source
element. If you previously made any manual changes to that existing
content, they will be overwritten.

To update a single inset reference

In the document window or Structure View, right-click on or within the reference inset
element and select Update Inset Reference.

—or—

Select More Inset Element Commands > Update Inset Reference And Nested Insets.

If you do not include nested insets, the update will include the current inset only. If you
include nested insets, any nested insets will also be updated in a cascading fashion. If
you do not update nested insets, but the inset does include nested insets, those nested
insets can be updated individually after the initial update.

To update all inset references in a document

With the document window active, select InsetPlus > Update All Insets In Document.

Chapter 2 — Managing Inset Sources and References

InsetPlus 3.10 17

Note: The update launch dialog includes some general options for file opening and
reporting. These options mirror those found in your local settings, and if you
change them in the launch dialog, those changes will remain in effect until you
change them again. Each time you start FrameMaker, though, your local settings
will be restored. For more information on local settings, see “Local settings” on
page 21.

For more information on the source module tracking option, see “About whole-document
updates and source tracking” on page 24.

To update all inset references in a book

With the book window active and all chapter files open, select InsetPlus > Update All
Insets In Book.

Note: The update launch dialog includes some general options for file opening and
reporting. These options mirror those found in your local settings, and if you
change them in the launch dialog, those changes will remain in effect until you
change them again. Each time you start FrameMaker, though, your local settings
will be restored. For more information on local settings, see “Local settings” on
page 21.

For more information on the source module tracking option, see “About whole-document
updates and source tracking” on page 24.

About attribute value transfer during updates
Optionally, InsetPlus can transfer attribute values from source elements to reference
elements during updates. All settings related to this feature are found in the local settings
file (see “Local settings” on page 21). Note the following:

• When attribute values are transferred, the markup of your files is changed. Be sure
that this is what you intend before using the feature.

• By default, the feature is completely disabled.

• In addition to the overall enable/disable setting, the settings file contains a number of
options to determine exactly which attributes qualify for the transfer. For example, you
may or may not want existing values on a reference element to be overwritten. Again,
review the local settings file carefully for an understanding of the options available.

• When a transfer occurs, the exact contents of an attribute are transferred, including
multiple values as applicable.

• Values from the following attributes are never transferred, regardless of any settings:
the conref/ID attributes used by InsetPlus, unique ID attributes, and IDReference
(cross-reference) attributes.

About relative versus absolute file paths
When you specify a source file for a reference inset element, you can have InsetPlus
attempt to use a relative file path. The advantage to relative paths is that you can
transport your reference and source file to a new location, and if the folder structure is
identical, all inset links will be preserved.

The choice whether to use relative or absolute paths is purely dependent on your
workflow and network architecture. Relative paths are typically preferred, if feasible.

Chapter 2 — Managing Inset Sources and References

18 InsetPlus 3.10

Note: InsetPlus makes all effort to readjust relative paths in the case of nested insets, if
the content changes folders when its parent inset is updated. It also attempts to
adjust relative paths of any reference elements if a file is saved to a new folder. If
it cannot resolve an adjusted relative path, it will reset the path to absolute.

About nested insets
InsetPlus provides the ability to nest insets, with no physical limitation on the depth of
nesting. An nested inset is normally represented as a reference inset element within a
source inset element. This setup effectively represents an inset source that contains an
inset itself, and when referenced in another document, the internal inset becomes a
nested inset.

As an example, consider the following figure, which shows:

• A reference inset (to source “Module_4”)

• The actual source for Module_3, which references another source, “SubModule_1”

• The actual source for “SubModule_1”:

The middle diagram shows the source for Module_4, which contains a Body element and
another inset reference to “SubModule_1,” effectively making SubModule_1 a nested
inset, whose source is shown in the lower right.

When updating insets, InsetPlus works in a cascading fashion, and walks through the tree
of any new content looking for more inset references. That is, whenever an inset is
updated, InsetPlus copies in the specified content, and then walks down through that

Chapter 2 — Managing Inset Sources and References

InsetPlus 3.10 19

content looking for any more references to update, and so forth until all references are
updated.

InsetPlus attempts to automatically adjust all relative paths when handling nested inset
updates. For example, since the SubModule_1 reference points to a source in a different
folder than the source for Module_4, an update process would attempt adjust that relative
path when Module_4 is updated. Thus, under normal circumstances, relative paths can
be used safely within nested insets.

It should be noted that nested insets should be used cautiously and judiciously, especially
when combined with relative file paths. With extensive nesting, your documents and
module repositories can become very complex and difficult to manage. In addition, the
reliability of relative paths within nested insets is only valid when you perform
whole-document updates, because the adjustment of relative paths depends on the
cascading nature of the whole-document update. If you attempt to update individual
nested insets in a random fashion, the automatic maintenance of relative paths may be
disrupted and some reference links could become broken.

Updating the source of an inset from the reference
For any inset reference with a valid link to the source, you can right-click on it and select
More Inset Element Commands > Update Source. This command has the reverse
effect of a reference update, in that it replaces the contents of the source element with the
current contents of the reference element. This function is provided as a convenience for
making edits to your source modules. However, you should note the following:

• If you change a source module, any other place that references that module will
change too, but only with the next reference update. If you are in a collaborative,
heavy reuse environment, frequent usage of this command may not be the most
practical means of managing your source modules.

• InsetPlus can only perform the update if the source document is currently open, or
can be opened in an editable fashion.

• If InsetPlus opens the source and makes the update, it will not close it again without
prompting you. Closure requires the document to be saved, and it is the intent of West
Street that this plugin never makes permanent changes to your content without your
consent.

• If the source file was already open, your update will not become permanent until you
save that file. If you have your local settings set to use message boxes for single inset
updates, you will receive a reminder following the update.

• When a source is updated, nothing happens automatically to those places that
reference it. InsetPlus is not a content management system and does not provide this
level of automation. However. if you are using the source module tracking feature, you
can produce tracking reports that show all places where sources are reference. In any
case, it is recommended that you make it a habit to always update all your references
in a document or book before publishing. For more information on source module
tracking, see “Source module tracking” on page 21.

Updating all sources referenced by a document
If you have your local settings set up as such, you can have the InsetPlus menu include
the command to Update All Referenced Sources, which will locate all reference

Chapter 2 — Managing Inset Sources and References

20 InsetPlus 3.10

elements in the active file and update their respective sources. The command has the
same effect as if you right-clicked on every reference element in the file and selected
Update Inset Source. For more information on setting this preference, see “Local
settings” on page 21.

YOU SHOULD MAKE VERY SURE that you want this command in your menus
before enabling it. If something is amiss in your reference files, this could cause
sweeping and possibly devastating alterations to your source library. Consider yourself
warned. If you accidentally select it and mess up all your data, don’t call us.

InsetPlus 3.10 21

Chapter 3 — Preferences and
Utilities

InsetPlus provides a set of management utilities and customizable settings to assist with
inset management.

Local settings
All local settings (general preferences, etc.) are stored in a text file that can be accessed
by selecting InsetPlus > Open Settings File. Note the following:

• The settings in this file are critically important to the behavior of InsetPlus. For
any new installation, you should review the entire file carefully to be sure that
InsetPlus is properly configured for your usage.

• By default, the settings file is named InsetPlus_Settings.txt and is stored in the
Windows “user profile” area. The following is a sample path on Windows XP for the
user “rward”:

C:\Documents and Settings\rward\Application
Data\Adobe\FrameMaker\10\WestStreet\InsetPlus\InsetPlus_Settings.txt

• When you select the command mentioned above, InsetPlus attempts to open the file
in Notepad. If the file fails to open, you may need to adjust the path to the Notepad
EXE file in the settings file (after opening the file manually).

• All documentation for individual settings is contained within the file.

• Changes to settings in the file have no effect until you save the file and select
InsetPlus > Read Settings From Settings File.

Source module tracking
InsetPlus provides a simple tracking mechanism that allows you to see where your
source modules are being used. When enabled, it stores tracking data each time an inset
source or reference is updated. At any point, you can produce a hyperlinked report on a
source inset and easily see what document(s) reference it and where.

A demonstration of the tracking feature is included in the tutorial. While the information in
this User Guide is important, it may be worth your time to do the tutorial first and see the
feature in action.

Note: InsetPlus is not a content management system and the tracking
mechanism is not a comprehensive solution for managing your module
library. It is a basic tool for reporting on where your source modules are
currently referenced. It works well in an environment where source and
reference files remain in static locations. However, if your content changes
locations or you have redundant locations for your content, the tracking
mechanism may require some study to understand how it works before it
is useful to you.

Chapter 3 — Preferences and Utilities

22 InsetPlus 3.10

Requirements to use source module tracking
• Source tracking turned on in your local settings (see “Local settings” on page 21.

• A valid local or network folder specified for InsetPlus to store its tracking data. See
“More about the tracking data folder” on page 24.

• All drives containing reference and source files mapped to a Windows drive letter, for
example, C:.

• Source files that do not change their path locations, with the exception of being
moved to another mapped drive within the same directory structure.

How source module tracking works - Overview
For every reference-to-source module link, the tracking mechanism evaluates how many
references to that module are present in the reference document and stores that count.
Then, when you produce a tracking report for a module, the report will contain a hyperlink
to each of those references, labeled sequentially as #1, #2, etc. It does not actually
record any explicit links between single reference and source elements.

For example, assume that you have a source “Module1” in SourceFile.fm. And, you
have four references to Module1 in another file, ReferenceFile.fm. When you update
one of these references, InsetPlus will count those four references and store the count in
its tracking data. Then, if you produce a report on Module1 usage, you will see four links
to the four reference elements, labeled something like:

C:\ReferenceFile.fm

(Relative path link)

• Reference #1

• Reference #2

• Reference #3

• Reference #4

Total references found for this module (at report generation): 4

The tracking data does not actually know what these specific reference elements are. It
only knows that there are four contained in the file ReferenceFile.fm, and when you
click a link, it finds the appropriate instance in document order. The reason for this
behavior is that two reference elements in the same file to the same source do not
inherently contain any unique quality that can distinguish them. They both have the same
conref attribute markup and both contain the exact same text. Therefore, rather than
place a requirement for all reference elements to be assigned some unique ID, this
alternative methodology was implemented to keep the feature simple and useful
out-of-the-box. The feature still allows you to find each individual reference element, only
without any unique identifying characteristic for each.

Reporting source module usage
The tracking feature includes three ways to report on source usage:

• Right-click menus You can right-click on any source or reference element and
select More Inset Element Commands > Report Source Module Usage. This
command will produce a report on all reference elements that point to the selected

Chapter 3 — Preferences and Utilities

InsetPlus 3.10 23

element. If the selected element is a reference element, InsetPlus will first determine
the source of the inset, then report on the source.

• Whole-file report You can generate a report on source modules within an entire
document or book by selecting InsetPlus > Source Module Tracking > Generate
Audit Report (Whole File). This command produces a report for all referenced
source elements found within the active document or book, according to the most
recent tracking data. This command parses the active file for all potential sources,
looks up the tracking data for each one, and reports its findings.

• Whole-library report You can generate a report of the entire source module library
by selecting InsetPlus > Source Module Tracking > Generate Audit Report
(Whole Library). Note that this command uses the current tracking data only and
does not parse any files. If you have a source element somewhere that is not
accounted for in the tracking data, it will not appear in the report at all. Also, this
command requires you to specify the default location for your source files. For more
information on why this is required, see “About tracking data and absolute vs. relative
paths” on page 24.

Starting to use the tracking feature
To start using the tracking feature, you need only turn it on and set the tracking data
folder. For more information, see “Local settings” on page 21.

Populating your tracking data
Tracking data is recorded any time you:

• Update an inset. This includes whole-document update actions, if you chose the
option to Do source module tracking updates in the launch dialog box.

• Open and/or close a file, if enabled (respectively) in your local settings (see “Local
settings” on page 21).

If you are just starting to use the source tracking feature, a good way to initially populate
your tracking data is to enable the option to update tracking data upon file open or close,
then open and close all of your reference documents. Depending upon your usage
module, it also may be useful to periodically delete all of your tracking data then repeat
the steps above to refresh the data with clean information.

More about the source module tracking report
When you produce a tracking report, it is always created based on the current tracking
data. For more information on ways to produce a report, see “Reporting source module
usage” on page 22.

Because the report is based on tracking data without any direct analysis of your actual
files, the report could contain errors if you have made structural alterations that are not
reflected in the tracking data. For example, if you delete a reference element in a
particular file but do not update insets in that file afterwards, the tracking mechanism may
not know that this reference element no longer exists and will still report on it.

To help maintain accurate tracking data, a tracking report includes a data cleanup feature
for non-existent reference elements. If you click a reference element hyperlink and
InsetPlus is unable to find the element, it will warn you as such and ask you whether you
would like to update your tracking data. If you click Yes, your tracking data (and the

Chapter 3 — Preferences and Utilities

24 InsetPlus 3.10

report) will be updated to reflect a revised number of occurrences for the respective
reference element.

More about the tracking data folder
InsetPlus must store information about source module usage in some folder which you
can specify in the source module tracking preferences. For more information, see “Local
settings” on page 21.

This folder may be any folder on your computer or a network drive. If you want to use
source module tracking in an enterprise fashion, you should reserve a folder on a network
to contain this data and point all InsetPlus users to this folder.

Note that tracking data contained in this folder is generally oriented towards relative file
associations between source and reference elements. For more information, see “About
tracking data and absolute vs. relative paths” on page 24.

Within the folder, tracking data is stored within text files, which you can open with any text
editor. While you may poke around in these files, it is highly recommended that you do not
alter them in any way. InsetPlus depends upon the prescribed syntax and format of these
files and any unexpected alterations may, at best, cause the tracking mechanism to
malfunction, and, at worst, cause FrameMaker to crash.

About whole-document updates and source tracking
When you update insets in a whole file, the update dialog includes an option to perform
source module updates as well. With this option checked, the source module tracking
data is refreshed for each source module with each inset update, exactly as it would
during an individual inset update.

Because tracking data updates slow down the overall update process, you may choose to
disable this option if you know that your tracking data is current. However, if you can
tolerate the slower update speeds, it is normally good practice to leave it enabled.

About tracking data and absolute vs. relative paths
InsetPlus is designed to support seamless usage of relative path designations to source
modules. This feature allows a whole document set, including reference and source files,
to be moved as a unit to any network location and still allow the links between references
and sources to be preserved.

A disadvantage of this flexibility is that it adds a layer of complexity to source module
tracking. For example, assume that you are working on drive C: and you have created a
number of relative path references to other files on C:. Then, you move all your files as a
set to drive R:. Because your paths are relative, all your insets should still update
properly. However, if you produce a report on one of your source modules on drive R:,
you would expect that the hyperlinked report would lead you to the respective reference
file on drive R:, not the original drive C: where it was originally created.

For this reason, InsetPlus tracking data does not adhere to drive letters when storing
information about relative path links. It stores the relative path only. As such, when
generating a source module tracking report, it handles path designations as follows:

• If you are reporting on a single module or a whole file and the tracking data specifies
a relative path, the respective hyperlink in the report will assume the same drive as
the drive of the source file on which you are reporting.

Chapter 3 — Preferences and Utilities

InsetPlus 3.10 25

• If you are reporting on the whole library and the tracking data specifies a relative path,
the hyperlink in the report will assume the drive letter you specify in the dialog that
launches the report. This step is necessary because the reporting mechanism would
not otherwise know the location of the source file or the relative reference file,
because in a relative path architecture, the location could be on any drive.

• If you are reporting on a single module, a whole file, or the whole library, and the
tracking data specifies an absolute path, the hyperlink in the report will resolve to the
absolute path.

In general, if you intend to use the source module tracking mechanism, it is
recommended that you do not mix absolute and relative paths. If you do, you should take
some time to get familiar with the behavior of the tracking mechanism and understand
how it works.

About element tags and source tracking
For best results, it is highly recommended that you adhere to the convention of using the
same element tags for source and reference elements. The use of differing tags could
produce unexpected results and will result in InsetPlus disabling some source tracking
features. You can configure InsetPlus to require identical tags with a setting in your local
settings (see “Local settings” on page 21).

Tracking data maintenance and cleanup
Through normal InsetPlus usage, source module tracking data should maintain itself.
However, in the event that you do make changes that require a major cleanup, such as
the movement of files, you can delete all of your tracking data files and repeat the steps
recommended for new users (see “Starting to use the tracking feature” on page 23).

General utilities
This section describes the general management utilities provided with InsetPlus.

Inset inventory report
With a book or document active, you can select InsetPlus > Inset Management >
Generate Inset Report to produce a hyperlinked inventory of reference insets within the
active file. The report is generated in read-only format such that the hyperlinking works
automatically. To make the report editable, type the standard FrameMaker shortcut
sequence Esc F l k.

Coloring insets
With a book or document active, you can select InsetPlus > Inset Management > Color
Insets to color your reference inset elements and contents. This feature is provided as a
simple convenience for quickly identifying insets within a document. When you launch the
coloring dialog box, the color drop-down list is populated with the colors from the active
document, or in the case of a book, the first open document found for the book. During
processing, if InsetPlus attempts to apply a color that doesn’t exist in a particular
document, nothing will happen. Also, if you are coloring a whole book, any files that are
currently closed are skipped.

Chapter 3 — Preferences and Utilities

26 InsetPlus 3.10

Note: Colors are applied as general format overrides, as if you had manually opened a
format editor and selected a new color. To remove them, you should refresh your
element definitions by selecting InsetPlus > Inset Management > Unolor
Insets (Refresh EDD).

Clearing insets
With a book or document active, you can select InsetPlus > Inset Management > Clear
Insets to clear the content of all inset reference elements. It has the same effect
document-wide as the right-click Clear Inset command. Like all plugin commands, this
command cannot be undone. Remember that you can always close your files without
saving changes to revert a command such as this. If you are clearing insets in a whole
book, any files that are closed are skipped.

Source module collection
The source module collection utility (InsetPlus > Inset Management > Collect Inset
Source Files) allows you to gather all referenced source files for a document or book and
optionally redirect all reference insets to those files. It is intended as a general purpose
consolidation or archival tool. Note the following:

• Depending on the options you choose, this utility may alter your files! Be sure
that you are positive that the results are what you expected before saving any files!

• If your source files are in XML format, you may need to account for structure
application behavior when the files are saved to the new location. For example, if your
DTD or schema typically resides with your source files, you’ll need to manually place
the file(s) in the destination folder so that the FrameMaker save operation (as
applicable) functions correctly.

Then the utility runs, it first parses your file(s) and gathers a list of all source files that are
referenced. It then copies those files to the specified location and, if enabled, redirects all
references to those copies. Note that the original source files in their original locations are
not altered.

The dialog box contains the following options:

Option Description

Folder in which to
collect source files

Destination folder to which source files should be copied.

Redirect inset
references to the new
source locations

Enables/disables the option to redirect inset references.

IMPORTANT! If you enable this option, InsetPlus will
change the values of all applicable conref attributes as
necessary to redirect reference elements. Your files will
be altered!

Chapter 3 — Preferences and Utilities

InsetPlus 3.10 27

Converting insets to conref mode
In previous releases, InsetPlus included a utility to convert classic mode insets to conref
mode. Given the length of time since the introduction of conref mode and the deprecation
of classic mode, this feature has been discontinued. If you still have need of this feature,
please contact West Street.

Use FrameMaker to
copy files

Causes the following behavior:

• If checked, the utility copies files by opening them in
FrameMaker and then doing a “save as” operation to
the new location. This option allows you to preserve
standard save-as conveniences, such as the automatic
adjustment of paths to referenced graphics.

• If unchecked, uses a simple system call to copy files,
similar to a copy/paste action within Windows explorer.
This method is faster; however, no automatic
FrameMaker path management tools will be available.

Do warning and
prompt messages

Enables/disables all message-box related prompting, such
as file overwrite warnings. If disabled, InsetPlus assumes
that you want to perform all specified and necessary
operations to complete the collection, including overwriting
files. It is recommended that you keep this option enabled,
because the process may produce several important
prompts and warnings.

Generate collection
report

Enables/disables the generation of a report about the
activities that occurred during collection.

Option Description

Chapter 3 — Preferences and Utilities

28 InsetPlus 3.10

InsetPlus 3.10 29

Chapter 4 —
External Calls to InsetPlus

Like many FrameMaker plugins, you can make external calls to InsetPlus from your own
API clients or supported scripts. Specifically, you can call InsetPlus to:

• Launch the inset editor

• Update a single inset, a tree of insets, an entire document, or an entire book.

How to send an external call to the plugin
To call the plugin, you can use one of three methods:

• With the FDK F_ApiCallClient() function, from another API client If you are
working on another FDK client, you can use F_ApiCallClient() to call the plugin.
This function is part of the normal FDK library and does not require any changes to
your normal project settings. For more information on the function itself, see the FDK
Developer’s Reference provided by Adobe with the FDK.

• With FrameScript or ExtendScript (FM10 or later) FrameScript®, a scripting tool

by Finite Matters, Ltd® and ExtendScript have a comparable function for calling FDK
clients, CallClient(). When called from a script, the plugin behaves identically to a
regular API call.

• With FrameAC FrameAC by Mekon® (www.mekon.com) is a plugin that enables
developers to use Visual Basic to control FrameMaker. FrameAC also provides the
ability to script calls to other API clients.

For any supported operation, you pass a string to the plugin which contains a command
and any applicable parameters, and the plugin sends back a numeric code indicating the
results. The syntax of these strings is the same for either API or scripting calls, and is
explained in detail in this document.

Tip: The call descriptions and examples in this document are written from an FDK/API
perspective, using F_ApiCallClient(). If you are using FrameScript or
FrameAC, the basic call syntax will be the same, sent using the mechanism
supported by the respective tool.

General information on external calls
Before you attempt to call the plugin, note the following:

• Calls and returns sometimes involve document and element IDs, instead of names.
Therefore, to use external calls effectively, you must be familiar with element and
document IDs and how to convert them into the desired results.

• The default delimiter string between arguments in a call to the plugin is three dashes
(---). In this document, the syntax of external calls use the default, which you should
adjust accordingly if you decide to change the delimiter. For more information on
changing the delimiter, see ChangeCallDelimiter.

Chapter 4 — External Calls to InsetPlus

30 InsetPlus 3.10

• Due to the nature of F_ApiCallClient(), the plugin can only return a single
integer after a call. No strings or other values can be returned. Therefore, all returns
are in integer format and may represent items such as sequence numbers, element
IDs, and error codes.

• Several calls to InsetPlus return zero (0) to indicate success, consistent with the
behavior of other FDK functions. However, F_ApiCallClient() also returns zero if it fails
to communicate at all with the specified API client. If you aren’t sure whether your
calls are reaching the plugin, you can call the special Hello command to verify that
communications are getting through.

• Call strings are generally not case-sensitive.

Specifying document and book arguments
When a document or book identifier is required, you may use any of the following three
methods:

• An object handle ID - The integer form of the F_ObjHandleT object ID for the file.

• A filename - A non-qualified filename, such as MyDocument.fm.

• A file path - A fully-qualified file path, such as:

C:\MyDocs\MyDocument.fm

With this method, you may substitute forward-slashes for backslashes. For example:
C:/MyDocs/MyDocument.fm

In all cases, the file must be currently open. The plugin will not open any files.

Specifying Boolean arguments
When an argument requires a Boolean true or false, you can specify it as follows:

• For true, you can specify 1, true, or any word that begins with “t”, including just t.

• For false, you can specify 0, false, or any word that begins with “f”, including just f.

Boolean arguments are not case-sensitive.

Call reference
This section details the external calls you can make to the plugin.

ChangeCallDelimiter
Changes the delimiter for external call arguments. The default upon startup is three
dashed (“---”).

Syntax
F_ApiCallClient("InsetPlus", "ChangeCallDelimiterNewDelimiter");

Note: The new delimiter directly follows the ChangeCallDelimiter command. Do
not separate them with the old delimiter. Anything following the command will be
considered the new delimiter.

Chapter 4 — External Calls to InsetPlus

InsetPlus 3.10 31

Returns
F_ApiCallClient() returns one of the following values:

ChangeCallDelimiter syntax example
F_ApiCallClient("InsetPlus", "ChangeCallDelimiter++++");

ColorInsets
Applies coloring to a single reference inset, all insets in a specified branch, all insets in a
document, or all insets in a book. The command has similar functionality to the
comparable menu item, except with more precision as to where the coloring occurs.

Syntax
F_ApiCallClient("InsetPlus", "ColorInsets---File---ElemId---Color");

where:

Value Meaning

0 A communication error occurred. Consider calling Hello to verify that
InsetPlus is active.

1 The delimiter was successfully changed.

101 Unrecognized command. Make sure you spelled
“ChangeCallDelimiter” correctly.

103 Incorrect number of arguments in the call string. Make sure you provided a
new delimiter after ChangeCallDelimiter.

File Book or document in which to apply coloring. For more
information, see “Specifying document and book arguments”
on page 30.

ElemId For document actions only, the object handle of the element at
which to start coloring, in integer form (integer form of the FDK
F_ObjHandleT type). Any inset represented by this element or
descendant to this element will be colored. Note that:

• You can specify zero (0) to default to the highest-level
element.

• This argument is ignored when File is a book, in which
case all coloring begins at the highest-level element.

Color Case-sensitive name of the color to apply, as a string. For
document actions, if the color does not exist in the template,
the command fails with an error. For book actions, no warning
is given for a non-existent color.

Chapter 4 — External Calls to InsetPlus

32 InsetPlus 3.10

Returns
F_ApiCallClient() returns one of the following values:

ColorInsets syntax examples
F_ApiCallClient("InsetPlus", "ColorInsets---67108880---704950292---Red");

F_ApiCallClient("InsetPlus",

 "ColorInsets---C:/MyDocs/Myfile.fm---0---Green");

F_ApiCallClient("InsetPlus",

 "ColorInsets---C:/MyDocs/MyBook.book---0---Purple");

GetParm
Gets a parameter related to the plugin.

Syntax
F_ApiCallClient("InsetPlus", "GetParm---Parameter");

where Parameter may be as follows:

Returns
F_ApiCallClient() returns one of the following values:

Value Meaning

0 A communication error occurred. Consider calling Hello to verify that
InsetPlus is active.

1 Coloring appears to have completed successfully.

101 Unrecognized command. Make sure you spelled “ColorInsets” correctly.

103 Incorrect number of arguments in the call string.

104 Invalid document argument.

105 Invalid element ID.

127 For document actions only, the specified color was not found in the
template. Check the spelling and case-sensitivity.

Parameter Description

InsetPlusVersionMajor Returns the major version number of the plugin,
such as the “3” in v3.10.

InsetPlusVersionMinor Returns the minor version number of the plugin,
such as the “10” in v3.10.

Value Meaning

0 A communication error occurred. Consider calling Hello to verify that
InsetPlus is active.

101 Unrecognized command. Make sure you spelled “GetParm” correctly.

103 Incorrect number of arguments in the call string.

Chapter 4 — External Calls to InsetPlus

InsetPlus 3.10 33

GetParm syntax examples
F_ApiCallClient("InsetPlus", "GetParm---InsetPlusVersionMajor");

Hello
Determines if InsetPlus is initialized and receiving external calls.

Syntax
F_ApiCallClient("InsetPlus", "Hello");

Usage description
Hello is a simple call to ensure that InsetPlus is available and responding to external
calls.

Returns
F_ApiCallClient() returns one of the following values after a Hello call:

Hello syntax example
. . .

IntT returnVal;

. . .

returnVal = F_ApiCallClient("InsetPlus", "Hello");

if(returnVal != 1)

 F_ApiAlert("Error. InsetPlus is not ready.", FF_ALERT_CONTINUE_WARN);

LaunchInsetEditor
Launches the inset editor for a specified reference element. Once the editor is launched,
control is returned to the user and InsetPlus has no further interaction. The call will fail if
you specify an element that is not valid as a reference inset element.

Syntax
F_ApiCallClient("InsetPlus", "LaunchInsetEditor---Document---ElemId");

109 Bad parameter argument.

Any
other
value

The requested parameter value

Value Meaning

Value Meaning

0 Communication with InsetPlus failed. Check to make sure that InsetPlus is
initialized and running. Also, make sure that InsetPlus is properly registered
in the maker.ini file under the name “InsetPlus.”

1 InsetPlus is installed and ready.

101 Unrecognized command. Make sure you spelled “Hello” correctly.

Chapter 4 — External Calls to InsetPlus

34 InsetPlus 3.10

where:

Returns
F_ApiCallClient() returns one of the following values:

LaunchInsetEditor syntax examples
F_ApiCallClient("InsetPlus", "LaunchInsetEditor---67108880---704950292");

F_ApiCallClient("InsetPlus",

 "LaunchInsetEditor---C:/MyDocs/Myfile.fm---704950292");

LaunchInsetEditor code sample
The following example launches the inset editor for the element that contains the current
insertion point.

. . .

F_ObjHandleT docId, elemId;

UCharT arg[64];

IntT returnVal;

F_ElementRangeT er;

/* Find the active document and current element */

docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

if(docId)

{

 er = F_ApiGetElementRange(FV_SessionId, docId, FP_ElementSelection);

 elemId = er.beg.parentId;

}

Document See “Specifying document and book arguments” on page 30.

ElemId The object handle of the inset element to edit, in integer form
(integer form of the FDK F_ObjHandleT type).

Value Meaning

0 A communication error occurred. Consider calling Hello to verify that
InsetPlus is active.

1 The editor was successfully launched. This value is returned whether or not
the user clicks OK or Cancel in the editor.

101 Unrecognized command. Make sure you spelled “LaunchInsetEditor”
correctly.

103 Incorrect number of arguments in the call string.

104 Invalid document argument.

105 Invalid element ID. This return may occur in some cases if the document ID
is invalid.

120 General failure, cause unknown.

121 Element ID is valid, but element is not valid as a reference inset element.

Chapter 4 — External Calls to InsetPlus

InsetPlus 3.10 35

if(!docId || !elemId)

{

 F_ApiAlert("Invalid document and/or element", FF_ALERT_CONTINUE_WARN);

 return;

}

/* Form the argument for the LaunchInsetEditor call */

F_Sprintf(arg, "LaunchInsetEditor---%d---%d", docId, elemId);

/* Call InsetPlus to launch the editor */

returnVal = F_ApiCallClient("InsetPlus", (StringT)arg);

/* Report */

if(returnVal == 1)

 F_ApiAlert("It worked.", FF_ALERT_CONTINUE_WARN);

else

 F_ApiAlert("Something went wrong.", FF_ALERT_CONTINUE_WARN);

. . .

SetParm
Sets a functional parameter, as described under “Syntax” on page 35. If you require
access to a parameter that is not supported, please contact West Street.

Syntax
F_ApiCallClient("InsetPlus", "SetParm---Parameter---Value");

where Parameter and value may be as follows:

Returns
F_ApiCallClient() returns one of the following values:

Parameter Valid values

SourceTrackingIsOn True or False (see “Specifying Boolean arguments” on
page 30). When source tracking is disabled, the source
tracking data is not updated during inset updates,
resulting in faster processing.

Value Meaning

0 A communication error occurred. Consider calling Hello to verify that
InsetPlus is active.

1 The parameter was successfully changed.

101 Unrecognized command. Make sure you spelled “SetParm” correctly.

103 Incorrect number of arguments in the call string.

109 Bad parameter argument.

Chapter 4 — External Calls to InsetPlus

36 InsetPlus 3.10

SetParm syntax examples
F_ApiCallClient("InsetPlus", "SetParm---SourceTrackingIsOn---False");

UpdateInsets
Updates a single inset, all insets within a branch or tree, or all insets within an entire
document. This command supports both reference and source updates. Note the
following:

• This command does not support whole-book updates. For book inset updates, you
must run this command on each applicable chapter file.

• When a table or a table row element is updated, its ID is changed. Therefore, if you
are updating a single inset of this type, the ID you send will not be valid following the
operation. Therefore, if you need the ID of the updated inset following the operation,
you must make provisions in your code to rediscover it afterwards.

Syntax
F_ApiCallClient("InsetPlus",

"UpdateInsets---Document---ElemId---[UpdateType---OpenDocs---
CloseDocs---DoWarnings---DoReporting]");

Note the following:

• The UpdateType through DoReporting arguments are optional. If unspecified,
defaults are used. If you specify one, all arguments previous to it must be specified as
well.

• A whole-document update is triggered by the ElemId argument. See the following
table.

• If you have source module tracking turned on, the update process will be slower.
Optionally, you can turn it off with SetParm.

• No documents are saved after any update action. To preserve changes, you must
save them with your code.

Arguments:

Document See “Specifying document and book arguments” on page 30.

ElemId The object handle of the inset element to update, in integer
form (integer form of the FDK F_ObjHandleT type). Note the
following:

• To update a whole document (main flow only), send a
negative number

• To update branch, tree, etc., send the parent element of the
branch

• To update a single inset element, send that element ID

In summary, if you send an element ID, that element and any
subordinate inset elements will be updated, as applicable.

Chapter 4 — External Calls to InsetPlus

InsetPlus 3.10 37

Returns
F_ApiCallClient() returns one of the following values:

Note: If you are updating a branch or an entire tree which contains multiple insets, the
process continues until finished even if one or more update actions produce an
error. Therefore, if an error is returned, it does not mean that all updates failed,
only that at least one failed. If the operation produces multiple failures, the error
returned applies to the most recent failure event which may or may not be
applicable to previous failures.

UpdateType Update type:

• 1 - Reference inset update

• 2 - Source inset update

In either case, for ElemId, send the ID of a reference inset
element. For source updates, the update occurs from the
content of the reference element, much like using the menu
commands in the FrameMaker GUI. If this argument is not
specified, the default is 1 (reference update).

OpenDocs Indicates whether to open source documents if they are
currently closed (Boolean argument). If set to false, any
updates to sources in closed documents will fail. See
“Specifying Boolean arguments” on page 30.

CloseDocs Indicates whether to close any documents that InsetPlus
opened to complete an update, once all updates are finished
(Boolean argument). See “Specifying Boolean arguments” on
page 30.

DoWarnings Indicates whether to display message boxes for prompts,
warnings, and other messages (Boolean argument). If set to
true, InsetPlus may display message boxes that will halt the
update process until manually dismissed. See “Specifying
Boolean arguments” on page 30.

DoReporting Indicates whether to produce the hyperlinked report for
warnings and errors (Boolean argument). See “Specifying
Boolean arguments” on page 30.

Value Meaning

0 A communication error occurred. Consider calling Hello to verify that
InsetPlus is active.

1 A single-element update action appears to have completed successfully.
This value is only returned when the sent element is determined to be a
valid reference element.

Chapter 4 — External Calls to InsetPlus

38 InsetPlus 3.10

UpdateInsets syntax examples
Update a single element, or an element and all subordinate elements:

F_ApiCallClient("InsetPlus",

 "UpdateInsets---67108880---704950292");

F_ApiCallClient("InsetPlus",

 "UpdateInsets---67108880---704950292---1");

F_ApiCallClient("InsetPlus",

 "UpdateInsets---67108880---704950292"---1---1---1---0---0);

Update a whole document (note that the third argument is a -1):
F_ApiCallClient("InsetPlus",

 "UpdateInsets---C:/MyDocs/Myfile.fm----1");

F_ApiCallClient("InsetPlus",

 "UpdateInsets---67108800----1");

F_ApiCallClient("InsetPlus",

 "UpdateInsets---67108800----1---1---1---1---0---0");

2 An update action appears to have completed successfully, but the element
sent (if any) did not appear to be a reference inset element. This value is
returned when you send a higher-level element or initiate a whole document
update. This return does not indicate that all or any subordinate inset
elements updated correctly. To know the success of individual updates that
occurred, you must produce the error report.

If you attempt to update a single reference element and receive this return,
InsetPlus did not recognize the element as an inset reference. Make sure
you are using the correct element ID.

101 Unrecognized command. Make sure you spelled “UpdateInsets”
correctly.

103 Incorrect number of arguments in the call string.

104 Invalid document argument.

105 Invalid element ID.

117 The action was cancelled by the user (someone pressed Esc).

120 General failure, cause unknown.

122 No source file could be found to retrieve the source element text. This error
may occur if the source file is closed and you have chosen not to open
closed documents.

123 The source element could not be found. This value may be returned in some
cases if the source file could not be accessed, in place of 122.

124 An update of a table row inset failed due to a mismatch in the number of
cells (columns) between the reference and source.

Value Meaning

	Chapter 1 — Introduction
	Licensing information
	Important disclaimer
	Tutorial information
	What is InsetPlus?
	How it works overall
	Source elements versus reference elements
	Important conref note
	Requirements to use InsetPlus
	More about inset elements and attributes
	Valid element types for inset elements
	Translation of the InsetPlus interface
	Selecting a language
	Language configuration
	Additional language utilities

	Limitations
	Technical details
	Trademarks

	Chapter 2 — Managing Inset Sources and References
	Right-click menu behavior
	Editing a reference inset element
	Source module management
	Naming and storing inset sources
	Updating sources
	Nesting inset references within inset sources

	Inset reference management
	Updating inset references
	About attribute value transfer during updates

	About relative versus absolute file paths
	About nested insets
	Updating the source of an inset from the reference
	Updating all sources referenced by a document

	Chapter 3 — Preferences and Utilities
	Local settings
	Source module tracking
	Requirements to use source module tracking
	How source module tracking works - Overview
	Reporting source module usage
	Starting to use the tracking feature
	Populating your tracking data
	More about the source module tracking report
	More about the tracking data folder
	About whole-document updates and source tracking
	About tracking data and absolute vs. relative paths
	About element tags and source tracking
	Tracking data maintenance and cleanup

	General utilities
	Inset inventory report
	Coloring insets
	Clearing insets
	Source module collection

	Converting insets to conref mode

	Chapter 4 — External Calls to InsetPlus
	How to send an external call to the plugin
	General information on external calls
	Specifying document and book arguments
	Specifying Boolean arguments

	Call reference
	ChangeCallDelimiter
	Syntax
	Returns
	ChangeCallDelimiter syntax example

	ColorInsets
	Syntax
	Returns
	ColorInsets syntax examples

	GetParm
	Syntax
	Returns
	GetParm syntax examples

	Hello
	Syntax
	Usage description
	Returns
	Hello syntax example

	LaunchInsetEditor
	Syntax
	Returns
	LaunchInsetEditor syntax examples
	LaunchInsetEditor code sample

	SetParm
	Syntax
	Returns
	SetParm syntax examples

	UpdateInsets
	Syntax
	Returns
	UpdateInsets syntax examples

